4

【白话模电1】PN结与二极管 - 硬件狗

 1 year ago
source link: https://www.cnblogs.com/zhaoming510/p/17046465.html
Go to the source link to view the article. You can view the picture content, updated content and better typesetting reading experience. If the link is broken, please click the button below to view the snapshot at that time.
neoserver,ios ssh client
距离上一次写半导体,已经过了很久了,上次分享了本征半导体的基本概念:
https://zhuanlan.zhihu.com/p/109483580
今天给大家聊聊半导体工业中的基础:PN结与二极管

1、掺杂的半导体

如果将本征半导体进行掺杂处理,我们可以得到P型半导体和N型半导体。如图1-1,P型半导体以空穴作为多数载流子,N型半导体以电子作为多数载流子。如果单纯的对掺杂半导体进行通电,我们会发现半导体的导电能力大大增强了(相对于本征半导体),在相同掺杂浓度的半导体中,N型半导体体的导电能力更强(电子的迁移率大约是空穴迁移率的3倍)。
图1-1 本征半导体与掺杂半导体

2、载流子的扩散与漂移

如果将一个P型半导体和一个N型半导体合在一起,那么由于扩散运动,N型半导体内的电子会跑到P型半导体中和空穴复合;P型半导体的空穴会跑到N型半导体内与电子复合。那么这个时候在结合面的附近P型半导体空轨道被电子填满形成带负电的粒子,而N型半导体失去自由电子,形成带正点的粒子,扩散运动形成了正负粒子构建的内电场。随着扩散深度的加强,内电场的场强在增加,此时进入电场内的载流子被加速:电子逆着电场方向移动,空穴沿着电场方向移动,P型半导体获得空穴,N型半导体获得电子,从而使内建电场强度减弱形成“负反馈”。最终PN 结的内建场强处于一个动态平衡之中,如图2-1。
在PN结的内建电场区域几乎没有自由移动的载流子,而正负粒子被晶格所束缚不能自由移动。这个空间区域称为空间电荷区,也叫耗尽层,也叫势垒区。在初学模拟电路的时候,我们经常会被这三个名词所困惑,这里我们不妨再看一下:空间电荷区是按照电荷特性划分的,该部分是不能自由移动的电荷;从电场的角度来看,内建电场阻碍了载流子的扩散,就像一堵墙一样,如果载流子要通过这个区域必须获得克服该势垒的能量;从载流子的角度来看,这里的电子和空穴进行了复合,仿佛附近的载流子被消耗了一般,因此也称为耗尽层。所以,空间电荷区 = 势垒区 = 耗尽层
图2-1 PN结的结构与内建电场

3、PN结的开关特性

PN结形成的耗尽层,可以说是整个半导体工业的基础结构:因为其单相导电性。如图3-1,如果我们在P型半导体加上正电压,N型半导体加上负电压,P型半导体电子被抽走,剩下空穴;N型半导体获得电子补充。外部电压提供的电子和空穴在耗尽层进行复合,空间电荷区减小,形成源源不断的电流流动。相反,如图3-2,如果在P型半导体上加上负电压,N型半导体上加上正电压,P型半导体获得多余的电子;N型半导体电子被抽走,留下带正电的空穴,空间电荷区增加,内建场强增加,阻碍电子的漂移运动,PN结保持截止状态。
图3-1 PN结的正向导通
图3-2 PN结反向截止

4、温度对PN结的影响

在使用半导体器件中,经常碰到一个概念,就是这个器件的某个参数(比如等效阻抗,击穿电压)是正温度系数还是负温度系数。温度对半导体的特性有着至关重要的影响,那么在微观层面温度是如何影响PN结的呢? 温度的升高一方面可以提高半导体的本质载流子激发,一定程度提高了载流子浓度,更多的载流子参与导电电阻率降低;另外一方面,温度的上升导致晶格的振动增强,载流子的平均自由程变短,载流子的迁移率降低,电阻率升高。
由于工艺和应用场景不同,不同型号的二极管正向导通压降呈现正温度系数或者负温度系数。如图4-1,两个相同二极管并联。如果二极管特性如左图,其中一个二极管温度较高,那么该二极管分流的电流就越大,而电流越大温度越高,进一步加剧该二极管的分流,导致最终该二极管承受绝大部分的电流,可能引起二极管的热失效;如果二极管特性如右图,在大电流条件下,正温度系数的管压降能够自动对并联二极管进行均流,该特性的二极管才满足并联使用条件。
图4-1 二极管正向导通温度曲线
而对于二极管反向耐压而言,温度的降低意味着晶格振动的减弱,载流子更容易漂移通过势垒区,形成反向击穿电流。随着温度的升高,二极管的反向耐压是降低的

5、齐纳击穿和雪崩击穿

如果我们使用两个重掺杂的P型半导体和N型半导体制造二极管,那么载流子的浓度会很高,PN结的耗尽层会非常的薄。这时候加上反向电压能够轻松帮助载流子穿过势垒区,从而获得一定的反向电流,这种击穿称为“齐纳击穿”,该二极管称为齐纳二极管。如图5-1,进入反向击穿区(Reverse breakdown),电流迅速增大,电压保持不变,因此也称为“稳压二级管”。
简单来说,使用高掺杂的半导体形成较薄的耗尽层,载流子的迁移过程中晶格和杂质离子对载流子的散射作用比较有限,可以忽略。载流子可以很轻易的穿过耗尽层,形成耗尽层的击穿。但是这种击穿能量又不高,是一种可恢复的击穿。随着温度的升高,耗尽层内的载流子活性增强,击穿电压降低。漏电流增加,这在电路设计时需要注意。
图5-1 齐纳二极管特性曲线
对于普通掺杂的二极管,同样的温度的升高会使得耗尽层内的载流子活性增强,更容易被激发出来。但是由于耗尽层的距离较远需要穿过更多的晶格,晶格的振动增强,载流子的平均自由程变短,从而使二极管的耐压提高。二极管反压后需要更多的能量将载流子加速,才能穿过势垒区,形成反向电流。在加速的电子过程中,由于电场很强,加速电子后很容易轰击出其他接近电离的粒子(想象下大力出奇迹地轰击台球),于是雪崩效应发生了。雪崩效应电离出的载流子越来越多,最终电流也越来越大,形成击穿电流,烧毁二极管。
比较下齐纳击穿和雪崩击穿,如图5-2可以看出,雪崩击穿的曲线拐点较缓慢,而齐纳击穿的拐点较陡。并且先发生齐纳击穿,再发生雪崩击穿,雪崩击穿能量要比齐纳击穿的能量大得多。
图5-2 齐纳击穿与雪崩击穿

参考资料:

  1. https://www.ednchina.com/news/5615.html
  2. https://zhuanlan.zhihu.com/p/77910253

About Joyk


Aggregate valuable and interesting links.
Joyk means Joy of geeK