5

聊一下 RocketMQ 的消息存储之 MMAP

 3 years ago
source link: https://nicksxs.me/2021/09/04/%E8%81%8A%E4%B8%80%E4%B8%8B-RocketMQ-%E7%9A%84%E6%B6%88%E6%81%AF%E5%AD%98%E5%82%A8/
Go to the source link to view the article. You can view the picture content, updated content and better typesetting reading experience. If the link is broken, please click the button below to view the snapshot at that time.
neoserver,ios ssh client

聊一下 RocketMQ 的消息存储之 MMAP

Posted on 2021-09-04 In MQ , RocketMQ , 消息队列 Views: 10 Views: 10 Disqus: 0 Comments

这是个很大的话题了,可能会分成两部分说,第一部分就是所谓的零拷贝 ( zero-copy ),这一块其实也不新鲜,我对零拷贝的概念主要来自这篇文章,个人感觉写得非常好,在 rocketmq 中,最大的一块存储就是消息存储,也就是 CommitLog ,当然还有 ConsumeQueue 和 IndexFile,以及其他一些文件,CommitLog 的存储是以一个 1G 大小的文件作为存储单位,写完了就再建一个,那么如何提高这 1G 文件的读写效率呢,就是 mmap,传统意义的读写文件,read,write 都需要由系统调用,来回地在用户态跟内核态进行拷贝切换,

read(file, tmp_buf, len);
write(socket, tmp_buf, len);

vms95Z

vms95Z

如上面的图显示的,要在用户态跟内核态进行切换,数据还需要在内核缓冲跟用户缓冲之间拷贝多次,

  1. 第一步是调用 read,需要在用户态切换成内核态,DMA模块从磁盘中读取文件,并存储在内核缓冲区,相当于是第一次复制
  2. 数据从内核缓冲区被拷贝到用户缓冲区,read 调用返回,伴随着内核态又切换成用户态,完成了第二次复制
  3. 然后是write 写入,这里也会伴随着用户态跟内核态的切换,数据从用户缓冲区被复制到内核空间缓冲区,完成了第三次复制,这次有点不一样的是数据不是在内核缓冲区了,会复制到 socket buffer 中。
  4. write 系统调用返回,又切换回了用户态,然后数据由 DMA 拷贝到协议引擎。

如此就能看出其实默认的读写操作代价是非常大的,而在 rocketmq 等高性能中间件中都有使用的零拷贝技术,其中 rocketmq 使用的是 mmap

mmap基于 OS 的 mmap 的内存映射技术,通过MMU 映射文件,将文件直接映射到用户态的内存地址,使得对文件的操作不再是 write/read,而转化为直接对内存地址的操作,使随机读写文件和读写内存相似的速度。

mmap 把文件映射到用户空间里的虚拟内存,省去了从内核缓冲区复制到用户空间的过程,文件中的位置在虚拟内存中有了对应的地址,可以像操作内存一样操作这个文件,这样的文件读写文件方式少了数据从内核缓存到用户空间的拷贝,效率很高。

tmp_buf = mmap(file, len);
write(socket, tmp_buf, len);

I68mFx

I68mFx

第一步:mmap系统调用使得文件内容被DMA引擎复制到内核缓冲区。然后该缓冲区与用户进程共享,在内核和用户内存空间之间不进行任何拷贝。

第二步:写系统调用使得内核将数据从原来的内核缓冲区复制到与套接字相关的内核缓冲区。

第三步:第三次拷贝发生在DMA引擎将数据从内核套接字缓冲区传递给协议引擎时。

通过使用mmap而不是read,我们将内核需要拷贝的数据量减少了一半。当大量的数据被传输时,这将有很好的效果。然而,这种改进并不是没有代价的;在使用mmap+write方法时,有一些隐藏的陷阱。例如当你对一个文件进行内存映射,然后在另一个进程截断同一文件时调用写。你的写系统调用将被总线错误信号SIGBUS打断,因为你执行了一个错误的内存访问。该信号的默认行为是杀死进程并dumpcore–这对网络服务器来说不是最理想的操作。

有两种方法可以解决这个问题。

第一种方法是为SIGBUS信号安装一个信号处理程序,然后在处理程序中简单地调用返回。通过这样做,写系统调用会返回它在被打断之前所写的字节数,并将errno设置为成功。让我指出,这将是一个糟糕的解决方案,一个治标不治本的解决方案。因为SIGBUS预示着进程出了严重的问题,所以不鼓励使用这种解决方案。

第二个解决方案涉及内核的文件租赁(在Windows中称为 “机会锁”)。这是解决这个问题的正确方法。通过在文件描述符上使用租赁,你与内核在一个特定的文件上达成租约。然后你可以向内核请求一个读/写租约。当另一个进程试图截断你正在传输的文件时,内核会向你发送一个实时信号,即RT_SIGNAL_LEASE信号。它告诉你内核即将终止你对该文件的写或读租约。在你的程序访问一个无效的地址和被SIGBUS信号杀死之前,你的写调用会被打断了。写入调用的返回值是中断前写入的字节数,errno将被设置为成功。下面是一些示例代码,显示了如何从内核中获得租约。

if(fcntl(fd, F_SETSIG, RT_SIGNAL_LEASE) == -1) {
    perror("kernel lease set signal");
    return -1;
}
/* l_type can be F_RDLCK F_WRLCK */
if(fcntl(fd, F_SETLEASE, l_type)){
    perror("kernel lease set type");
    return -1;
}

About Joyk


Aggregate valuable and interesting links.
Joyk means Joy of geeK