9

Class 12 RD Sharma Solutions - Chapter 19 Indefinite Integrals - Exercise 19.25...

 9 months ago
source link: https://www.geeksforgeeks.org/class-12-rd-sharma-solutions-chapter-19-indefinite-integrals-exercise-19-25-set-2/
Go to the source link to view the article. You can view the picture content, updated content and better typesetting reading experience. If the link is broken, please click the button below to view the snapshot at that time.
neoserver,ios ssh client

Evaluate the following integrals:

Question 21. ∫(log⁡x)2 x dx

Solution:

Given that, I = ∫(log⁡x)2 x dx

Using integration by parts,       

∫u v dx = v∫ u dx – ∫{d/dx(v) × ∫u dx}dx + c 

We get

I = (log⁡x)2∫xdx – ∫(2(log⁡x)(1/x) ∫xdx)dx

= x2/2(log⁡x)2 – 2∫(log⁡x)(1/x)(x2/2)dx

= x2/2(log⁡x)2 – ∫x(log⁡x)dx

= x2/2(log⁡x)2 – [log⁡x∫xdx – ∫ (1/x ∫xdx)dx]

= x2/2(log⁡x)2 – [x22/2 log⁡x – ∫(1/x × x2/2)dx]

= x2/2(log⁡x)2 – x2/2 log⁡x + 1/2 ∫xdx

= x2/2(log⁡x)2 – x2/2 log⁡x + 1/4 x2 + c

Hence, I = x2/2 [(log⁡x)2 – log⁡x + 1/2] + c

Question 22. ∫e√x dx

Solution:

Given that, I = ∫ e√x dx

 Let us assume, √x = t

x = t2

dx = 2tdt

I = 2∫ et tdt

Using integration by parts,       

∫u v dx = v∫ u dx – ∫{d/dx(v) × ∫u dx}dx + c 

We get

I = 2[t∫etdt – ∫(1∫etdt)dt]

= 2[tet – ∫et dt]

= 2[tet – et] + c

= 2et (t – 1) + c

Hence, I = 2e√x(√x – 1) + c

Question 23. ∫(log⁡(x + 2))/((x + 2)2) dx

Solution:

Given that, I = ∫(log⁡(x + 2))/((x + 2)2) dx

 Let us assume (1/(x + 2) = t

-1/((x + 2)2) dx = dt

I = -∫log⁡(1/t)dt

= -∫log⁡t-1 dt

= -∫1 × log⁡tdt

Using integration by parts,       

∫u v dx = v∫ u dx – ∫{d/dx(v) × ∫u dx}dx + c 

We get

I = log⁡t∫dt – ∫(1/t ∫dt)dt

= tlog⁡t – ∫(1/t × t)dt

= tlog⁡t – ∫dt

= tlog⁡t – t + c

= 1/(x + 2) (log⁡(x + 2)-1 – 1) + c

Hence, I = (-1)/(x + 2) – (log⁡(x + 2))/(x + 2) + c

Question 24. ∫(x + sin⁡x)/(1 + cos⁡x) dx

Solution:

Given that, I = ∫(x + sin⁡x)/(1 + cos⁡x) dx

= ∫x/(2cos2x/2) dx + ∫(2sin⁡x/2 cos⁡x/2)/(2cos2⁡x/2) dx

= 1/2 ∫xsec2⁡x/2 dx + ∫tan⁡x/2 dx

Using integration by parts,       

∫u v dx = v∫ u dx – ∫{d/dx(v) × ∫u dx}dx + c 

We get

= 1/2 [x∫sec2x/2 dx – ∫(1∫ sec²x/2 dx)dx] + ∫tan⁡x/2 dx

= 1/2 [2xtan⁡x/2 – 2∫tan⁡x/2 dx] + ∫tan⁡x/2 dx + c

= xtan⁡x/2 – ∫tan⁡x/2 dx + ∫tan⁡x/2 dx+c

Hence, I = xtan⁡x/2 + c

Question 25. ∫log10xdx

Solution:

Given that, I = ∫log10⁡xdx

= ∫(log⁡x)/(log⁡10) dx

= 1/(log⁡10) ∫1 × log⁡xdx

Using integration by parts,       

∫u v dx = v∫ u dx – ∫{d/dx(v) × ∫u dx}dx + c 

We get

= 1/(log⁡10) [log⁡x∫dx – ∫(1/x ∫dx)dx]

= 1/(log⁡10) [xlog⁡x – ∫(x/x)dx]

= 1/(log⁡10)[xlog⁡x – x]

Hence, I = (x/(log⁡10)) × (log⁡x – 1) + c

Question 26. ∫cos⁡√x dx

Solution:

Given that, I = ∫cos⁡√x dx

Let us assume, √x = t

x = t2

dx = 2tdt

= ∫2tcos⁡tdt

I = 2∫tcos⁡tdt

Using integration by parts,       

∫u v dx = v∫ u dx – ∫{d/dx(v) × ∫u dx}dx + c 

We get

I = 2[t]cos⁡tdt – ∫(1 ∫cos⁡tdt)dt]

= 2[tsin⁡t – ∫sin⁡tdt]

= 2[tsin⁡t + cos⁡t] + c

Hence, I = 2[√x sin⁡√x + cos√x] + c

Question 27. ∫(xcos-1x)/√(1 – x2) dx

Solution:

Given that, I = ∫(xcos-1x)/√(1 – x2) dx

Let us assume, t = cos-1⁡x

dt = (-1)/√(1 – x2) dx

Also, cost = x

I = -∫tcos⁡tdt

Now, using integration by parts,       

So, let

du = dt

∫cos⁡tdt = ∫dv

sin⁡t = v

Therefore,

 I = -[tsint – ∫sin⁡tdt]

= -[tsint + cos⁡t] + c

On substituting the value t = cos-1x we get,

 I = -[cos-1⁡xsin⁡t + x] + c

Hence, I = -[cos-1⁡x√(1 – x²) + x] + c

Question 28. ∫cosec3xdx

Solution:

Given that, I =∫cosec3xdx

 =∫cosec⁡x × cosec2xdx

Using integration by parts,       

∫u v dx = v∫ u dx – ∫{d/dx(v) × ∫u dx}dx + c 

We get

= cosec⁡x × ∫cosec2xdx + ∫(cosec⁡xcot⁡x]cosec2xdx)dx

= cosecx × (-cot⁡x) + ∫cosec⁡xcot⁡x(-cot⁡x)dx

= -cosec⁡xcot⁡x – ∫cosecx⁡cot2⁡xdx

= -cosec⁡xcot⁡x – ∫cosec⁡x(cosec2x – 1)dx

= -cosec⁡xcot⁡x – ∫cosec3xdx + ∫cosecxd⁡x

I = -cosec⁡xcot⁡x – I + log⁡|tan⁡x/2| + c1

2l = -cosec⁡xcot⁡x + log⁡|tan⁡x/2| + c1

Hence, I = -1/2cosecx⁡cot⁡x + 1/2 log⁡|tan⁡x/2| + c

Question 29. ∫sec-1√x dx

Solution:

Given that, I = ∫sec-1⁡√x dx

 Let us assume, √x = t

x = t2

dx = 2tdt

I = ∫2tsec-1⁡tdt

Using integration by parts,       

∫u v dx = v∫ u dx – ∫{d/dx(v) × ∫u dx}dx + c 

We get

= 2[sec-1⁡t∫tdt – ∫(1/(t√(t2-1))∫tdt)dt]

= 2[t2/2 sec-1 – ∫(t/(2t√(t2 – 1)))dt]

= t2 sec-1⁡t – ∫t/√(t2 – 1) dt

= t2 sec-1⁡t – 1/2∫2t/√(t2 – 1) dt

= t2 sec-1⁡t – 1/2 × 2√(t2 – 1) + c

Hence, I = xsec-1⁡√x – √(x – 1) + c

Question 30. ∫sin-1√x dx

Solution:

Given that, I = ∫sin-1⁡√x dx 

Let us assume, x = t

dx = 2tdt

∫sin-1√x dx = ∫sin-1⁡√(t2) 2tdt

= ∫sin-1⁡t2tdt

= sin⁡-1t∫2tdt – (∫(dsin-1⁡t)/dt (∫2tdt)dt

= sin-1⁡t(t2) – ∫1/√(1 – t2) (t2)dt

Now, lets solve ∫1/√(1 – t2) (t2)dt

∫1/√(1 – t2) (t2)dt = ∫(t2 – 1 + 1)/√(1 – t2) dt

= ∫(t2 – 1)/√(1 – t2) dt + ∫1/√(1 – t2) dt

As we know that, value of ∫1/√(1 – t2) dt = sin-1⁡t

So, the remaining integral to evaluate is 

∫(t2 – 1)/√(1 – t2) dt= ∫-√(1 – t2) dt

Now, substitute, t = sin⁡u, dt = cos⁡udu, we gte

∫-√(1 – t2) dt = ∫-cos2udu = -∫[(1 + cos⁡2u)/2]du

= -u/2-(sin⁡2u)/4

Now substitute back u = sin-1x and t = √x, we get

= -(sin-1√x)/2 – (sin⁡(2sin-1⁡√x))/4

∫sin-1√x dx = xsin-1⁡√x-(sin-1⁡√x)/2 – (sin⁡(2sin-1√x))/4

sin⁡(2sin-1⁡√x) = 2√x √(1 – x)

Hence, I = xsin-1⁡√x – (sin-1⁡√x)/2 – √(x(1 – x))/2 + c

Question 31. ∫xtan2⁡xdx

Solution:

Given that, I =∫xtan2⁡xdx

 = ∫x(sec2x – 1)dx

Using integration by parts,       

∫u v dx = v∫ u dx – ∫{d/dx(v) × ∫u dx}dx + c 

We get

 = ∫xsec8xdx – ∫xdx

 = [x∫sec2xdx – ∫(1∫sec2xdx)dx] – x2/2

 = xtan⁡x – ∫tan⁡xdx – x2/2

Hence, I = xtan⁡x – log⁡|sec⁡x| – x2/2 + c

Question 32. ∫ x((sec⁡2x – 1)/(sec⁡2x + 1))dx

Solution:

Given that, I = ∫ x((sec⁡2x – 1)/(sec⁡2x + 1))dx

= ∫x((1 – cos⁡2x)/(1 + cos⁡2x))dx

= ∫x((sec2⁡x)/(cos2⁡x))dx

= ∫xtan2xdx

= ∫x(sec2⁡x – 1)dx

Using integration by parts,       

∫u v dx = v∫ u dx – ∫{d/dx(v) × ∫u dx}dx + c 

We get

= ∫xsec2xdx – ∫dx

= [x∫sec2⁡xdx – ∫(1∫  sec2xdx)dx] – x2/2

= xtan⁡x – ∫tan⁡xdx – x2/2

= xtan⁡x – log|secx| – x2/2 + c

Hence, I = xtan⁡x – log|secx| – x2/2 + c

Question 33. ∫(x + 1)exlog⁡(xex)dx

Solution:

Given that, I = ∫(x + 1)exlog⁡(xex)dx

Let us assume, xex = t

(1 × ex + xex)dx = dt

(x + 1)exdx = dt

I = ∫log⁡tdt

= ∫1 × log⁡tdt

Using integration by parts,       

∫u v dx = v∫ u dx – ∫{d/dx(v) × ∫u dx}dx + c 

We get

= log⁡t∫dt – ∫(1/t∫dt)dt

= tlog⁡t – ∫(1/t × t)dt

= tlog⁡t – ∫dt

= tlog⁡t – t + c

= t(log⁡t – 1) + c

Hence, I = xex (log⁡xex – 1) + c

Question 34. ∫sin-1(3x – 4x3)dx

Solution:

Given that, I = ∫sin-1(3x – 4x3)dx

Let us assume, x = sin⁡θ

dx = cos⁡θdθ

= ∫sin-1⁡(3sin⁡θ – 4sin3⁡θ)cos⁡θdθ

= ∫sin-1(sin⁡3θ)cos⁡θdθ

= ∫3θcos⁡θdθ

Using integration by parts,       

∫u v dx = v∫ u dx – ∫{d/dx(v) × ∫u dx}dx + c 

We get

= 3[θ]cos⁡θdθ – ∫(1∫cos⁡θdθ)dθ]

= 3[θsin⁡θ – ∫sin⁡θdθ]

= 3[θsin⁡θ + cos⁡θ] + c

Hence, I = 3[xsin-1⁡x + √(1 – x2)] + c)

Question 35. ∫sin-1(2x/(1 + x2))dx.

Solution:

Given that, I = ∫sin-1(2x/(1 + x2))dx

Let us assume, x = tan⁡θ

dx = sec2⁡θdθ

sin-1⁡(2x/(1 + x2)) = sin-1⁡((2tan⁡θ)/(1 + tan²⁡θ))

= sin-1⁡(sin⁡2θ) = 2θ

∫sin-1⁡(2x/(1 + x2))dx = ∫2θsec2θdθ = 2∫θsec2⁡θdθ

Using integration by parts,       

∫u v dx = v∫ u dx – ∫{d/dx(v) × ∫u dx}dx + c 

We get

2[θ∫sec2⁡θdθ – ∫{(d/dθ θ) ∫sec2θdθ}dθ

= 2[θtan⁡θ – ∫tan⁡θdθ]

= 2[θtan⁡θ + log⁡|cos⁡θ|] + c

= 2[xtan-1⁡x + log⁡|1/√(1 + x2)|] + c

= 2xtan-1⁡x + 2log⁡(1 + x2)1/2 + c

= 2xtan-1⁡x + 2[-1/2 log⁡(1 + x2)] + c

= 2xtan-1⁡x – log⁡(1 + x2) + c

Hence, I = 2xtan-1⁡x – log⁡(1 + x2) + c

Question 36. ∫ tan-1((3x – x3)/(1 – 3x2))dx

Solution:

Given that, I = ∫tan-1⁡((3x – x3)/(1 – 3x2))dx

 Let us assume, x = tan⁡θ

dx = sec2⁡θdθ

I = ∫tan-1⁡((3tan⁡θ – tan3θ)/(1 – 3tan2⁡x)) sec2⁡θdθ

=∫tan-1⁡(tan⁡3θ)sec2θdθ

= ∫3θsec2θdθ

Using integration by parts,       

∫u v dx = v∫ u dx – ∫{d/dx(v) × ∫u dx}dx + c 

We get

= 3[θ∫ sec2⁡θdθ – ∫(1∫sec2θdθ)dθ]

= 3[θtan⁡θ – ∫tan⁡θdθ]

= 3[θtan⁡θ + log⁡sec⁡θ] + c

= 3[xtan-1x – log⁡√(1 + x2)] + c

Hence, I = 3[xtan-1x – log⁡√(1 + x2)] + c

Question 37. ∫x2sin-1xdx

Solution:

Given that, I = ∫x2sin-1⁡xdx

I = sin-1x∫x2 dx – ∫(1/√(1 – x2) ∫x2 dx)dx

= x3/3 sin-1⁡x – ∫x3/(3√(1 – x2)) dx

I = x3/3 sin-1⁡x – 1/3 I1 + c1 …..(1)

Let I1 = ∫x3/√(1 – x2) dx

Let 1 – x2 = t2

-2xdx = 2tdt

-xdx = tdt

I1 = -∫(1 – t2)tdt/t

= ∫(t2 – 1)dt

= t3/3 – t + c2

= (1 – x2)3/2/3 – (1 – x2)1/2 + c2

Now, put the value of I1 in eq(1), we get

Hence, I = x3/3 sin-1⁡x – 1/9 (1 – x2)3/2 + 1/3 (1 – x2)1/2 + c

Question 38. ∫(sin-1x)/x2dx

Solution:

Given that, I =∫(sin-1⁡x)/x2dx

 = ∫(1/x2)(sin-1⁡x)dx

I = [sin-1⁡x∫1/x2dx – ∫(1/√(1 – x2) ∫1/x2dx)dx]

= sin-1×(-1/x) – ∫1/√(1 – x2) (-1/x)dx

I = -1/x sin-1x + ∫1/(x√(1 – x2)) dx

I = -1/x sin-1⁡x + I1  …….(1)

Where,

I1 = ∫1/(x√(1 – x2)) dx

Let 1 – x2 = t2

-2xdx = 2tdt

I1 = ∫x/(x2√(1 – x2)) dx

= -∫tdt/((1 – t2) √t)

= -∫dt/((1 – t2))

= ∫1/(t2 – 1) dt

= 1/2 log⁡|(t – 1)/(t + 1)| 

= 1/2 log⁡|(t – 1)/(t + 1)|

= 1/2 log⁡|(√(1 – x2) – 1)/(√(1 – x2) + 1)| + c1

Now, put the value of I1 in eq(1), we get

I = -(sin-1x)/x + 1/2 log⁡|((√(1 – x2) – 1)/(√(1 – x2) + 1))((√(1 – x2) – 1)/(√(1 – x2) – 1))| + c 

= -(sin-1⁡x)/x + 1/2 log⁡|(√(1 – x2) – 1)2/(1 – x2 – 1)| + c

= -(sin-1⁡x)/x + 1/2 log⁡|(√(1 – x2) – 1)2/(-x2)| + c

= -(sin-1⁡x)/x + log⁡|(√(1 – x2) – 1)/(-x)| + c

Hence, I = -(sin-1x)/x + log⁡|(1 – √(1 – x2))/x| + c

Question 39. ∫(x2 tan-1x)/(1 + x2) dx

Solution:

Given that, I = ∫(x2 tan-1⁡x)/(1 + x2) dx

Let us assume, tan-1⁡x = t     [x = tan⁡t]

1/(1 + x2) dx = dt

I = ∫t × tan2tdt

= ∫t(sec2⁡t – 1)dt

= ∫(tsec2t – t)dt

Using integration by parts,       

∫u v dx = v∫ u dx – ∫{d/dx(v) × ∫u dx}dx + c 

We get

= ∫tsec2tdt – ∫tdt

= [t∫sec2tdt – ∫(1)sec2⁡tdt)dt] – t2/2

= [t × tan⁡t – ∫tan⁡tdt] – t2/2

= t tan⁡t – log⁡sec⁡t – t2/2 + c

= xtan-1⁡x – log⁡√(1 + x2) – (tan2x)/2 + c

Hence, I = xtan-1⁡x – 1/2 log⁡|1 + x2| – (tan2⁡x)/2 + c

Question 40. ∫cos-1(4x3 – 3x)dx

Solution:

Given that, I = ∫cos-1⁡(4x3 – 3x)dx

 Let us assume, x = cos⁡θ

dx = -sin⁡θdθ

I = -∫cos-1(4cos⁡3θ – 3cos⁡θ)sin⁡θdθ

= – ∫cos-1(cos⁡3θ)sin⁡θdθ

= -∫3θsin⁡θdθ

Using integration by parts,       

∫u v dx = v∫ u dx – ∫{d/dx(v) × ∫u dx}dx + c 

We get

= -3[θ]sin⁡θdθ – ∫(1∫sin⁡θdθ)dθ]

= -3[-θcos⁡θ + ∫cos⁡θdθ]

= 3θcos⁡θ – 3sin⁡θ + c

Hence, I = 3xcos-1x – 3√(1 – x2) + c

Whether you're preparing for your first job interview or aiming to upskill in this ever-evolving tech landscape, GeeksforGeeks Courses are your key to success. We provide top-quality content at affordable prices, all geared towards accelerating your growth in a time-bound manner. Join the millions we've already empowered, and we're here to do the same for you. Don't miss out - check it out now!
Last Updated : 16 Dec, 2021
Like Article
Save Article

About Joyk


Aggregate valuable and interesting links.
Joyk means Joy of geeK