7

Transformer模仿大脑,在预测大脑成像上超越42个模型

 1 year ago
source link: https://www.qbitai.com/2023/01/41599.html
Go to the source link to view the article. You can view the picture content, updated content and better typesetting reading experience. If the link is broken, please click the button below to view the snapshot at that time.
neoserver,ios ssh client

Transformer模仿大脑,在预测大脑成像上超越42个模型

head.jpgPine 2023-01-27 13:37:08 来源:量子位

Transformer还能帮助我们理解大脑

Pine 发自 凹非寺

量子位 | 公众号 QbitAI

现在很多AI应用模型,都不得不提到一个模型结构:

Transformer

它抛弃了传统的CNN和RNN,完全由Attention机制组成。

Transformer不仅赋予了各种AI应用模型写文作诗的功能,而且在多模态方面也大放异彩。

尤其是ViT(Vision Transformer)出来之后,CV和NLP之间的模型壁垒被打破,仅使用Transformer一个模型就能够处理多模态的任务。

(谁看完不得感叹一句它的强大啊)

虽然一开始Transformer是为语言任务而设计的,但它在模仿大脑方面也有着很大的潜力。

这不,有位科学作家写了篇博客,就是关于Transformer是如何进行大脑建模的。

256b0779eb874519995e0122a21f66f1~noop.image?_iz=58558&from=article.pc_detail&x-expires=1675402026&x-signature=ePhv2JTf9TzDt0O3ZE4eNKE5FvE%3D

来康康他是怎么说的?

Transformer:做大脑做的事

首先,还得梳理一下它的演变过程。

Transformer机制在5年前首次出现,它能够有这么强大的表现,很大程度上归功于其Self-attention机制

至于Transformer是如何模仿大脑的,继续往下看。

在2020年,奥地利计算机科学家Sepp Hochreiter的研究团队利用Transformer重组了Hopfield神经网络 (一种记忆检索模型,HNN)。

其实,Hopfield神经网络在40年前就已经被提出,而研究团队之所以时隔数十年选择重组这个模型原因如下:

其一,这个网络遵循一个普遍的规律:同时活跃的神经元之间彼此会建立很强的联系

其二,Hopfield神经网络在检索记忆的过程中与Transformer执行Self-attention机制时有一定的相似之处。

所以研究团队便将HNN进行重组,让各个神经元之间建立更好的联系,以便存储和检索更多的记忆。

重组的过程,简单来说,就是把Transformer的注意力机制融合进HNN,使原来不连续的HNN变为可连续态。

46abd3465a56497c8b01393b392d8151~noop.image?_iz=58558&from=article.pc_detail&x-expires=1675402026&x-signature=2r0JBCmWPZAxqNBNH3%2BkEbSHcSA%3D

△图源:维基百科

重组之后的Hopfield网络可以作为层集成到深度学习架构中,以允许存储和访问原始输入数据、中间结果等。

因此,Hopfield本人和麻省理工学院沃森人工智能实验室的Dmitry Krotov都称:

基于Transformer的Hopfield神经网络在生物学上是合理的。

虽说这在一定程度上与大脑的工作原理相像,但在某些方面还不够准确。

因此,计算神经科学家Whittington和Behrens调整了Hochreiter的方法,对重组后的Hopfield网络做出了一些修正,进一步提高了该模型在神经科学任务中(复制大脑中的神经放电模式)的表现。

41bc58b0caf3480881e4166f63afc7a9~noop.image?_iz=58558&from=article.pc_detail&x-expires=1675402026&x-signature=QJ40qycSwagvC2ZHphyNZND%2BJdA%3D

△Tim Behrens (左) James Whittington(右) 图源:quantamagazine

简单来说,就是在编码-解码时,模型不再把记忆编码为线性序列,而是将其编码为高维空间中的坐标

具体而言,就是在模型中引入了TEM(Tolman-Eichenbaum Machine)。
TEM是为了模仿海马体的空间导航作用而构建的一个关联记忆系统

它能够概括空间和非空间的结构知识,预测在空间和关联记忆任务中观察到的神经元表现,并解释在海马和内嗅皮层中的重新映射现象

将拥有这么多功能的TEM与Transformer合并,组成TEM-transformer(TEM-t)。

然后,再让TEM-t模型在多个不同的空间环境中进行训练,环境的结构如下图所示。

42153fa2980049ad84d6b809bafd0e36~noop.image?_iz=58558&from=article.pc_detail&x-expires=1675402026&x-signature=pALzCHuU7D9HG9stn7%2Bw%2BRLjSPg%3D

在TEM-t中,它依旧拥有Transformer的Self-attention机制。这样一来,模型的学习成果便能迁移到新环境中,用于预测新的空间结构。

研究也显示,相较于TEM,TEM-t在进行神经科学任务时效率更高,而且它也能在更少学习样本的情况下处理更多的问题。

806e5ac4cf7647af8698401d3c34c0d3~noop.image?_iz=58558&from=article.pc_detail&x-expires=1675402026&x-signature=uFsd2CucmXCDuVVAbhc1lZtD28o%3D

Transformer在模仿大脑模式的道路上越来越深入,其实换句话说,Transformer模式的发展也在不断促进我们理解大脑功能的运作原理。

不仅如此,在某些方面,Transformer还能提高我们对大脑其他功能的理解。

Transformer帮助我们理解大脑

比如说,在去年,计算神经科学家Martin Schrimpf分析了43种不同的神经网络模型,以观察它们对人类神经活动测量结果:功能磁共振成像(fMRI)和皮层脑电图(EEG)报告的预测能力。

其中,Transformer模型几乎可以预测成像中发现的所有变化

倒推一下,或许我们也可以从Transformer模型中预见大脑对应功能的运作。

除此之外,最近计算机科学家Yujin Tang和 David Ha设计了一个模型,可以通过Transformer模型以随机、无序的方式有意识地发送大量数据,模拟人体如何向大脑传输感官观察结果。

这个Transformer就像人类的大脑一样,能够成功地处理无序的信息流

虽然Transformer模型在不断进步,但也只是朝着精确大脑模型迈出的一小步,到达终点还需要更深入的研究。

如果想详细了解Transformer是如何模仿人脑的,可以戳下方链接~

参考链接:
[1]https://www.quantamagazine.org/how-ai-transformers-mimic-parts-of-the-brain-20220912/
[2]https://www.pnas.org/doi/10.1073/pnas.2105646118
[3]https://openreview.net/forum?id=B8DVo9B1YE0

版权所有,未经授权不得以任何形式转载及使用,违者必究。

About Joyk


Aggregate valuable and interesting links.
Joyk means Joy of geeK