5

How Can Graph Neural Networks Help Document Retrieval: A Case Study on CORD19 wi...

 9 months ago
source link: https://dl.acm.org/doi/abs/10.1007/978-3-030-99739-7_9
Go to the source link to view the article. You can view the picture content, updated content and better typesetting reading experience. If the link is broken, please click the button below to view the snapshot at that time.
neoserver,ios ssh client

Abstract

Graph neural networks (GNNs), as a group of powerful tools for representation learning on irregular data, have manifested superiority in various downstream tasks. With unstructured texts represented as concept maps, GNNs can be exploited for tasks like document retrieval. Intrigued by how can GNNs help document retrieval, we conduct an empirical study on a large-scale multi-discipline dataset CORD-19. Results show that instead of the complex structure-oriented GNNs such as GINs and GATs, our proposed semantics-oriented graph functions achieve better and more stable performance based on the BM25 retrieved candidates. Our insights in this case study can serve as a guideline for future work to develop effective GNNs with appropriate semantics-oriented inductive biases for textual reasoning tasks like document retrieval and classification. All code for this case study is available at https://github.com/HennyJie/GNN-DocRetrieval.

References

  1. 1.Baeza-Yates, R., Ribeiro-Neto, B., et al.: Modern Information Retrieval, vol. 463 (1999)
  2. 2.Burges, C.J.C., et al.: Learning to rank using gradient descent. In: ICML (2005)
  3. 3.Chen, N., Kinshuk, Wei, C., Chen, H.: Mining e-learning domain concept map from academic articles. Comput. Educ. 50(5), 1009–1021 (2008)
  4. 4.Chen, Q., Peng, Y., Lu, Z.: Biosentvec: creating sentence embeddings for biomedical texts. In: ICHI, pp. 1–5 (2019)
  5. 5.Christensen, J., Mausam, Soderland, S., Etzioni, O.: Towards coherent multi-document summarization. In: NAACL, pp. 1163–1173 (2013)
  6. 6.Cui, H., Lu, Z., Li, P., Yang, C.: On positional and structural node features for graph neural networks on non-attributed graphs. CoRR abs/2107.01495 (2021)
  7. 7.Dang VBendersky MCroft WBet al.Serdyukov Pet al.Two-stage learning to rank for information retrievalAdvances in Information Retrieval2013HeidelbergSpringer42343410.1007/978-3-642-36973-5_36
  8. 8.Deshmukh, A.A., Sethi, U.: IR-BERT: leveraging BERT for semantic search in background linking for news articles. CoRR abs/2007.12603 (2020)
  9. 9.Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL (2019)
  10. 10.Farhi, S.H., Boughaci, D.: Graph based model for information retrieval using a stochastic local search. Pattern Recognit. Lett. 105, 234–239 (2018)
  11. 11.Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message passing for quantum chemistry. In: ICML, pp. 1263–1272 (2017)
  12. 12.Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: NeurIPS (2017)
  13. 13.Hogg, R.V., McKean, J., et al.: Introduction to Mathematical Statistics (2005)
  14. 14.Kamphuis Cet al.Jose JMet al.Graph databases for information retrievalAdvances in Information Retrieval2020ChamSpringer60861210.1007/978-3-030-45442-5_79
  15. 15.Keriven, N., Peyré, G.: Universal invariant and equivariant graph neural networks. In: NeurIPS (2019)
  16. 16.Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: ICLR (2017)
  17. 17.Krallinger MPadron MValencia AA sentence sliding window approach to extract protein annotations from biomedical articlesBMC Bioinform.2005611210.1186/1471-2105-6-S1-S19
  18. 18.Li, M., et al.: Connecting the dots: event graph schema induction with path language modeling. In: EMNLP, pp. 684–695 (2020)
  19. 19.Liu, T.Y.: Learning to Rank for Information Retrieval, pp. 181–191 (2011). DOI: https://doi.org/10.1007/978-3-642-14267-3_14
  20. 20.Liu, Z., et al.: Geniepath: graph neural networks with adaptive receptive paths. In: AAAI, vol. 33, no. 1, pp. 4424–4431 (2019)
  21. 21.Lu, J., Choi, J.D.: Evaluation of unsupervised entity and event salience estimation. In: FLAIRS (2021)
  22. 22.Manmatha, R., Wu, C., Smola, A.J., Krähenbühl, P.: Sampling matters in deep embedding learning. In: ICCV, pp. 2840–2848 (2017)
  23. 23.Manning, C., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S., McClosky, D.: The Stanford CoreNLP natural language processing toolkit. In: ACL, pp. 55–60 (2014)
  24. 24.Maron, H., Ben-Hamu, H., Shamir, N., Lipman, Y.: Invariant and equivariant graph networks. In: ICLR (2019)
  25. 25.Maron, H., Fetaya, E., Segol, N., Lipman, Y.: On the universality of invariant networks. In: ICML, pp. 4363–4371 (2019)
  26. 26.McClosky, D., Charniak, E., Johnson, M.: Automatic domain adaptation for parsing. In: NAACL Linguistics, pp. 28–36 (2010)
  27. 27.Mihalcea, R., Tarau, P.: Textrank: bringing order into text. In: EMNLP, pp. 404–411 (2004)
  28. 28.Nogueira, R., Cho, K.: Passage re-ranking with bert. arXiv preprint arXiv:1901.04085 (2019)
  29. 29.Roberts, K., et al.: Searching for scientific evidence in a pandemic: an overview of TREC-COVID. J. Biomed. Inform. 121, 103865 (2021)
  30. 30.Robertson, S., Walker, S., Jones, S., Hancock-Beaulieu, M., Gatford, M.: Okapi at trec-3. In: TREC (1994)
  31. 31.Rose SEngel DCramer NCowley WAutomatic keyword extraction from individual documentsText Min. Appl. Theory20101120
  32. 32.Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. In: ICLR (2018)
  33. 33.Wang, L.L., Lo, K., Chandrasekhar, Y., et al.: CORD-19: the COVID-19 open research dataset. In: Proceedings of the 1st Workshop on NLP for COVID-19 at ACL (2020)
  34. 34.Wang XYang CGuan RA comparative study for biomedical named entity recognitionInt. J. Mach. Learn. Cybern.20159337338210.1007/s13042-015-0426-6
  35. 35.Wu QBurges CJCSvore KMGao JAdapting boosting for information retrieval measuresInf. Retr.20101325427010.1007/s10791-009-9112-1
  36. 36.Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks? In: ICLR (2019)
  37. 37.Yang, C., et al.: Multisage: empowering GCN with contextualized multi-embeddings on web-scale multipartite networks. In: KDD, pp. 2434–2443 (2020)
  38. 38.Yang, C., Zhang, J., Wang, H., Li, B., Han, J.: Neural concept map generation for effective document classification with interpretable structured summarization. In: SIGIR, pp. 1629–1632 (2020)
  39. 39.Yang, C., et al.: Relation learning on social networks with multi-modal graph edge variational autoencoders. In: WSDM, pp. 699–707 (2020)
  40. 40.Yang, C., Zhuang, P., Shi, W., Luu, A., Li, P.: Conditional structure generation through graph variational generative adversarial nets. In: NeurIPS (2019)
  41. 41.Yilmaz, Z.A., Wang, S., Yang, W., Zhang, H., Lin, J.: Applying BERT to document retrieval with birch. In: EMNLP, pp. 19–24 (2019)
  42. 42.Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W.L., Leskovec, J.: Graph convolutional neural networks for web-scale recommender systems. In: KDD, pp. 974–983 (2018)
  43. 43.Yu, J., El-karef, M., Bohnet, B.: Domain adaptation for dependency parsing via self-training. In: Proceedings of the 14th International Conference on Parsing Technologies, pp. 1–10 (2015)
  44. 44.Zhang YChen QYang ZLin HLu ZBiowordvec, improving biomedical word embeddings with subword information and meshSci. Data201961910.1038/s41597-019-0055-0
  45. 45.Zhang, Y., Zhang, J., Cui, Z., Wu, S., Wang, L.: A graph-based relevance matching model for ad-hoc retrieval. In: AAAI (2021)
  46. 46.Zhang, Z., Wang, L., Xie, X., Pan, H.: A graph based document retrieval method. In: CSCWD, pp. 426–432 (2018)

Index terms have been assigned to the content through auto-classification.

Recommendations

  • Non-relevance Feedback for Document Retrieval
    KAM '09: Proceedings of the 2009 Second International Symposium on Knowledge Acquisition and Modeling - Volume 02

    We need to find documents that relate to human interesting from a large data set of documents. The relevance feedback method needs a set of relevant and non-relevant documents to work usefully. However, the initial retrieved documents, which are ...

  • A Document Retrieval Strategy Based on Non-Relevance Feedback
    FITME '09: Proceedings of the 2009 Second International Conference on Future Information Technology and Management Engineering

    From a large data set of documents, we need to find documents that relate to human interesting. The relevance feedback method needs a set of relevant and non-relevant documents to work usefully. However, the initial retrieved documents, which are ...

  • Cluster-Based Document Retrieval with Multiple Queries
    ICTIR '20: Proceedings of the 2020 ACM SIGIR on International Conference on Theory of Information Retrieval

    The merits of using multiple queries representing the same information need to improve retrieval effectiveness have recently been demonstrated in several studies. In this paper we present the first study of utilizing multiple queries in cluster-based ...

Comments

0 Comments


About Joyk


Aggregate valuable and interesting links.
Joyk means Joy of geeK