1

【ACM算法竞赛日常训练】DAY16【奇♂妙拆分】【区区区间间间】【小AA的数列】数学 | 位...

 1 year ago
source link: https://www.cnblogs.com/eriktse/p/17335906.html
Go to the source link to view the article. You can view the picture content, updated content and better typesetting reading experience. If the link is broken, please click the button below to view the snapshot at that time.
neoserver,ios ssh client

DAY16共3题:

  • 奇♂妙拆分(简单数学)

  • 区区区间间间(单调栈)

  • 小AA的数列(位运算dp)

🎈 作者:Eriktse
🎈 简介:19岁,211计算机在读,现役ACM银牌选手🏆力争以通俗易懂的方式讲解算法!❤️欢迎关注我,一起交流C++/Python算法。(优质好文持续更新中……)🚀
🎈 阅读原文获得更好阅读体验:https://www.eriktse.com/algorithm/1119.html

奇♂妙拆分(简单数学)

根据贪心的想法,若要使得因子尽可能多,那么因子应当尽可能小,大于根号n的因子至多一个,从小到大枚举[1, sqrt(n)]的所有整数,如果i能够整除n就作为一个因子。

Code:

#include <bits/stdc++.h>
#define int long long
using namespace std;

void solve()
{
    int n;cin >> n;
    set<int> st;
    for(int i = 1;i <= n / i; ++ i)
        if(n % i == 0)st.insert(i), n /= i;
    st.insert(n);
    
    cout << st.size() << '\n';
}

signed main()
{
    ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
    int _;cin >> _;
    while(_ --)solve();
    return 0;
}

区区区间间间(单调栈)

题意:给定一个数组,求所有子区间的最大值与最小值的差的和。

如果暴力枚举肯定不行,单单是子区间个数就有n ^ 2个,所以我们应该考虑每一个元素对答案的贡献,也就是说我们需要知道某个元素a[i]它会在多少个区间里作为最大值,在多少个区间里作为最小值

我们预处理出四个数组,分别是lmax[], rmax[], lmin[], rmin[]表示点i作为最大值的左右最远位置,和作为最小值的左右最远位置(lmax[i] = j,表示在区间[j, i]中的最大值都是a[i],其他的三个数组类似定义)。

用单调栈可以处理出这四个数组,一下以求lmax[]举例,维护一个单调不增栈,栈内存放的是下标

初始时栈内仅有一个a[0] = inf

当我们遇到一个a[i]时,不断地判断栈顶元素,如果栈顶元素比a[i]小,说明这个栈顶应当弹出。

当更新完毕后,此时的栈顶的右边相邻位置就是a[i]往左的最远的位置了,因为此时栈顶是a[i]往左的第一个大于等于a[i]的位置,那么这中间的元素都会小于a[i]

其他的三个数组类似,注意,如果我们处理lmax用的是单调不增栈,那么处理rmax就应当用单调递增栈,而不是单调不减栈,否则可能出现区间重复表示或没有归属的问题(自己思考)。

Code:

#include <bits/stdc++.h>
#define int long long
using namespace std;
const int N = 1e5 + 9, inf =8e18;
int a[N], stk[N], top, lmax[N], rmax[N], lmin[N], rmin[N];

void solve()
{
    int n;cin >> n;
    for(int i = 1;i <= n; ++ i)cin >> a[i];
    a[0] = a[n + 1] = inf;
    
    top = 0;
    stk[++ top] = 0;
    for(int i = 1;i <= n; ++ i)
    {
        while(top && a[i] > a[stk[top]])top --;
        lmax[i] = stk[top] + 1;
        stk[++ top] = i;
    }
    
    top = 0;
    stk[++ top] = n + 1;
    for(int i = n;i >= 1; -- i)
    {
        while(top && a[i] >= a[stk[top]])top --;
        rmax[i] = stk[top] - 1;
        stk[++ top] = i;
    }
    
    
    a[0] = a[n + 1] = -inf;
    top = 0;
    stk[++ top] = 0;
    for(int i = 1;i <= n; ++ i)
    {
        while(top && a[i] < a[stk[top]])top --;
        lmin[i] = stk[top] + 1;
        stk[++ top] = i;
    }
    
    top = 0;
    stk[++ top] = n + 1;
    for(int i = n;i >= 1; -- i)
    {
        while(top && a[i] <= a[stk[top]])top --;
        rmin[i] = stk[top] - 1;
        stk[++ top] = i;
    }
    int ans = 0;
    for(int i = 1;i <= n; ++ i)
    {
        ans += a[i] * (rmax[i] - i + 1) * (i - lmax[i] + 1);
        ans -= a[i] * (rmin[i] - i + 1) * (i - lmin[i] + 1);
    }
    cout << ans << '\n';
}

signed main()
{
    ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
    int _;cin >> _;
    while(_ --)solve();
    return 0;
}

小AA的数列(位运算 | 前缀和)

这道题一看有点懵,感觉不是很好处理,但依然是套路题。

看到异或,我们应该想把每一个二进制位拆分开,实际上这里约32位二进制位可以先认为是相互独立的,对于每一位都计算出贡献,然后按照位权重加和即可。

异或题的套路基本都是拆分二进制,整体考虑起来比较复杂,拆分后会简单很多。

先不管L, R

假如我们考虑数组1 2 3 4 5的第0位:

获取第0位后得到b数组:1 0 1 0 1

因为我们要得到区间内1的个数,所以处理一个异或前缀和p[]是自然而然的,然后我们枚举每一位作为左端点,看看会得到一个怎样的式子:

sum=∑j=i+1j+=2,j≤np[j]⊕p[i−1]

我们知道异或其实就是% 2的加法,也是% 2减法,所以我们将异或前缀和改为普通前缀和p[],以上的柿子可以转化为:

sum=∑j=i+1j+=2,j≤n[(p[j]−p[i−1])(mod2)]

那么我们就可以对p再做一个前缀和p2,但是p2的步长应为2。

然后上面的柿子就等价于(其中l, rj的上下限,需要保证与i - 1奇偶性相同,j的个数为(r - l + 2) / 2):

sum=|p2[r]−p2[l−1]−p[i−1]∗((r−l+2)/2))|

因为这个p2存在p2[-1]的情况,所以我们做个小小的便宜,方便代码的编写(其实你想要特判也行,只是不太方便,也容易出错)。

注意一下其他细节即可。

Code:

#include <bits/stdc++.h>
#define int long long
using namespace std;
const int N = 1e5 + 109, p = 1e9 + 7, T = 100;
int a[N], b[N], p1[N], p2[N];


signed main()
{
    ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
    int n, l, r;cin >> n >> l >> r;
    for(int i = 1;i <= n; ++ i)cin >> a[i];
    
    int ans = 0;
    for(int w = 0;w <= 32; ++ w)
    {
        for(int i = 1;i <= n; ++ i)b[i] = a[i] >> w & 1;
        for(int i = 1;i <= n; ++ i)p1[T + i] = (b[i] + p1[T + i - 1]) % 2;
        for(int i = 1;i <= n; ++ i)p2[T + i] = p1[T + i] + p2[T + i - 2];
        
        int sum = 0;
        for(int i = 1;i <= n; ++ i)
        {
            int j1 = max(i + 1, l + i - 1), j2 = min(n, r + i - 1);
            if((j1 - i) % 2 == 0)j1 ++;
            if((j2 - i) % 2 == 0)j2 --;
            if(j2 < j1)continue;
            
            sum += abs(p2[T + j2] - p2[T + j1 - 2] - 
                       p1[T + i - 1] * ((j2 - j1) / 2 + 1));
        }
        ans = (ans + (1ll << w) * sum % p) % p;
    }
    cout << ans << '\n';
    return 0;
}

🎈 本文由eriktse原创,创作不易,如果对您有帮助,欢迎小伙伴们点赞👍、收藏⭐、留言💬


About Joyk


Aggregate valuable and interesting links.
Joyk means Joy of geeK