8

All-3D-printed lithium metal batteries with high energy density

 1 year ago
source link: https://techxplore.com/news/2022-11-all-3d-printed-lithium-metal-batteries-high.html
Go to the source link to view the article. You can view the picture content, updated content and better typesetting reading experience. If the link is broken, please click the button below to view the snapshot at that time.
neoserver,ios ssh client

November 16, 2022

All-3D-printed lithium metal batteries with high energy density

by Li Yuan, Chinese Academy of Sciences

All-3D-printed lithium metal batteries with high energy density
Graphical abstract. Credit: Energy Storage Materials (2022). DOI: 10.1016/j.ensm.2022.10.036

A research team led by Prof. Wu Zhongshuai from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences has developed all-3D-printed Li metal batteries (LMBs) with robust cycle stability and ultrahigh areal energy density.

The LMBs take a porous and conductive Ti3C2Tx MXene skeleton for a dendrite-free and stable Li metal anode and multi-dimensionally conductive LiFePO4 (LFP) lattice as the ultra-thick cathode.

This study was published in Energy Storage Materials on Oct. 19.

LMBs are considered as a class of high-energy-density systems beyond current state-of-the-art lithium-ion batteries. Nevertheless, the uncontrollable dendrite growth and huge volume change of Li metal anodes have raised poor cycle life issues.

In this study, the researchers reported an all-3D-printing approach for constructing ultrahigh-performance LMBs. The LMBs were comprised of a dendrite-free Li metal anode with porous MXene lattices to regulate local current distribution, which homogenized the lithium nucleation, and a 3D conductive porous LFP framework cathode to achieve fast ion/electron transfer channels.

Due to the abundance of Li nucleation sites and large pore volume in the MXene lattices, the 3D printed MXene scaffolds prevented the infinite volume change and dendritic formation of Li anodes.

Furthermore, by pairing ultra-thick LFP cathodes lattices with high-efficiency electron and ion networks, the all-3D printed LFP||MXene@Li LMBs delivered unprecedented areal capacity (25.3 mAh/cm2) and energy density (81.6 mWh/cm2) under an ultrahigh mass loading of 171 mg/cm2, exceeding all reported 3D printed batteries so far.

More information: Jiaxin Ma et al, All 3D printing lithium metal batteries with hierarchically and conductively porous skeleton for ultrahigh areal energy density, Energy Storage Materials (2022). DOI: 10.1016/j.ensm.2022.10.036

About Joyk


Aggregate valuable and interesting links.
Joyk means Joy of geeK