2

【高等数学基础进阶】定积分应用

 1 year ago
source link: https://blog.51cto.com/u_15767241/5782767
Go to the source link to view the article. You can view the picture content, updated content and better typesetting reading experience. If the link is broken, please click the button below to view the snapshot at that time.
neoserver,ios ssh client

【高等数学基础进阶】定积分应用

精选 原创

平面图形的面积

若平面域DDD由曲线y=f(x),y=g(x)(f(x)≥g(x)),x=a,x=b(a<b)y=f(x),y=g(x)(f(x)\geq g(x)),x=a,x=b(a<b)y=f(x),y=g(x)(f(x)≥g(x)),x=a,x=b(a<b)所围成,则

S=∫ab[f(x)−g(x)]dx S=\int^{b}_{a}[f(x)-g(x)]dx

S=∫ab​[f(x)−g(x)]dx

化成二重积分

S=∬D1dσ=∫badx∫g(x)f(x)dy S=\iint\limits_{D}1d \sigma =\int^{a}_{b}dx \int^{f(x)}_{g(x)}dy

S=D∬​1dσ=∫ba​dx∫g(x)f(x)​dy

若平面域DDD由曲线ρ=ρ(θ),θ=α,θ=β(α<β)\rho =\rho (\theta ),\theta =\alpha,\theta =\beta(\alpha<\beta)ρ=ρ(θ),θ=α,θ=β(α<β)所围成,则

S=12∫αβρ2(θ)dθ S= \frac{1}{2}\int^{\beta}_{\alpha}\rho ^{2}(\theta )d \theta

S=21​∫αβ​ρ2(θ)dθ

化成二重积分

S=∬D1dσ=∫αβdθ∫0ρ(θ)ρdρ S=\iint\limits_{D}1d \sigma =\int^{\beta}_{\alpha}d \theta \int^{\rho (\theta )}_{0}\rho d \rho

S=D∬​1dσ=∫αβ​dθ∫0ρ(θ)​ρdρ

旋转体体积

若平面域DDD由曲线y=f(x),(f(x)≥0),x=a,x=b(a<b)y=f(x),(f(x)\geq0),x=a,x=b(a<b)y=f(x),(f(x)≥0),x=a,x=b(a<b)所围成,则

区域DDD绕xxx轴旋转一周所得到的旋转体积为

Vx=π∫abf2(x)dx V_{x}=\pi \int^{b}_{a}f^{2}(x)dx

Vx​=π∫ab​f2(x)dx

取一小段dx,(a<x<b)dx,(a<x<b)dx,(a<x<b),则这一小段绕xxx轴旋转的得到圆柱的高为dxdxdx,半径为f(x)f(x)f(x),因此体积为

dV=πf2(x)dx dV=\pi f^{2}(x)dx

dV=πf2(x)dx

然后积分得到VxV_{x}Vx​

区域DDD绕yyy轴旋转一周所得到的旋转体积为

Vy=2π∫abxf(x)dx V_{y}=2 \pi \int^{b}_{a}xf(x)dx

Vy​=2π∫ab​xf(x)dx

取一小段dx,(a<x<b)dx,(a<x<b)dx,(a<x<b),则这一小段绕yyy轴旋转出来一个圆筒,将该圆筒在任意一处竖直截开,得到一个长方体,该长方体的宽为dxdxdx,高为f(x)f(x)f(x),长为2πx2\pi x2πx,因此体积为

dV=2πxf(x)dx dV=2\pi xf(x)dx

dV=2πxf(x)dx

然后积分得到VyV_{y}Vy​

对于任意的区域DDD绕ax+by=cax+by=cax+by=c旋转,得到的旋转体体积,可以考虑二重积分,即在DDD取dσd \sigmadσ,该面积微元绕直线旋转得到一个环状体,该环状体的面积为dσd \sigmadσ,长度为2πr(x,y)2\pi r(x,y)2πr(x,y),其中r(x,y)r(x,y)r(x,y)表示该面积微元到直线的距离一般为r(x,y)=∣ax+by−c∣a2+b2\begin{aligned} r(x,y)=\frac{|ax+by-c|}{\sqrt{a^{2}+b^{2}}}\end{aligned}r(x,y)=a2+b2​∣ax+by−c∣​​,因此该环状体体积为

V=2πr(x,y)dσ V=2 \pi r(x,y)d \sigma

V=2πr(x,y)dσ

对面积微元做二重积分即可得到整体体积,即

V=2π∬Dr(x,y)dσ V=2\pi \iint\limits_{D}r(x,y)d \sigma

V=2πD∬​r(x,y)dσ

用该结论推绕x,yx,yx,y轴旋转的结论
区域DDD绕xxx轴旋转一周所得到的旋转体积为

V=2π∬Dydσ=2π∫abdx∫0f(x)ydy=π∫abf2(x)dx V=2\pi\iint\limits_{D}yd \sigma=2\pi \int^{b}_{a}dx \int^{f(x)}_{0}ydy=\pi \int^{b}_{a}f^{2}(x)dx

V=2πD∬​ydσ=2π∫ab​dx∫0f(x)​ydy=π∫ab​f2(x)dx

区域DDD绕yyy轴旋转一周所得到的旋转体积为

V=2π∬Dxdσ=2π∫abdx∫0f(x)xdy=2π∫abxf(x)dx V=2\pi \iint\limits_{D}x d \sigma=2\pi \int^{b}_{a}dx \int^{f(x)}_{0}xdy=2\pi \int^{b}_{a}xf(x)dx

V=2πD∬​xdσ=2π∫ab​dx∫0f(x)​xdy=2π∫ab​xf(x)dx

如果由直角坐标方程给出C:y=y(x),a≤x≤bC:y=y(x),a\leq x\leq bC:y=y(x),a≤x≤b

s=∫ab1+y′2dx s=\int^{b}_{a}\sqrt{1+y'^{2}}dx

s=∫ab​1+y′2​dx

如果由参数方程给出C:{x=x(t)y=y(t),α≤t≤βC:\left\{\begin{aligned}&x=x(t)\\&y=y(t)\end{aligned}\right.,\alpha\leq t \leq \betaC:{​x=x(t)y=y(t)​,α≤t≤β

s=∫αβx′2+y′2dt s=\int^{\beta}_{\alpha}\sqrt{x'^{2}+y'^{2}}dt

s=∫αβ​x′2+y′2​dt

如果由极坐标方程给出C:ρ=ρ(θ),α≤θβC:\rho =\rho (\theta ),\alpha\leq \theta \betaC:ρ=ρ(θ),α≤θβ

s=∫αβρ2+ρ′2dθ s=\int^{\beta}_{\alpha}\sqrt{\rho ^{2}+\rho '^{2}}d \theta

s=∫αβ​ρ2+ρ′2​dθ

直接带公式即可,没什么技巧

旋转体侧面积

S=2π∫abf(x)1+f′2(x)dx S=2\pi \int^{b}_{a}f(x)\sqrt{1+f'^{2}(x)}dx

S=2π∫ab​f(x)1+f′2(x)​dx

这里去任意一小段dxdxdx,对应弧dSdSdS,则根据勾股定理,有

dS=\sqrt{(dx){2}+(f’(x)dx){2}}=\sqrt{1+f’^{2}(x)}dx

即 $$S=2\pi \int^{b}_{a}f(x)\sqrt{1+f'^{2}(x)}dx=2\pi \int^{b}_{a}f(x)dS

此处在曲线弧长的直角坐标方程就已经有提到

压力,变力做功,引力

常考题型与典型例题

平面域面积和旋转体体积的计算

例1:设DDD是由曲线xy+1=0xy+1=0xy+1=0与直线y+x=0y+x=0y+x=0及y=2y=2y=2围成的有界区域,则DDD的面积为()

![[附件/Pasted image 20220901084351.png]]

S=∬D1dσ=∫12dy∫−y−1ydx=∫12(y−1y)dy=(12y2−ln⁡y)∣12=32−ln⁡2 \begin{aligned}

S=\iint\limits_{D}1d \sigma&=\int^{2}_{1}dy \int^{- \frac{1}{y}}_{-y}dx\\&=\int^{2}_{1}(y- \frac{1}{y})dy\\

&=(\frac{1}{2}y^{2}-\ln y)\Big|^{2}_{1}\\

&= \frac{3}{2}-\ln 2

\end{aligned}

S=D∬​1dσ​=∫12​dy∫−y−y1​​dx=∫12​(y−y1​)dy=(21​y2−lny)∣∣​12​=23​−ln2​

例2:设封闭曲线LLL的极坐标方程为r=cos⁡3θ(−π6≤θ≤π6)r=\cos3\theta (-\frac{\pi}{6}\leq \theta \leq \frac{\pi}{6})r=cos3θ(−6π​≤θ≤6π​),则LLL所围平面图形的面积为()

![[附件/Pasted image 20220901090302.png]]

S=12∫αβρ2(θ)dθ=2⋅12∫0π6cos⁡23θdθ=12∫0π6(1+cos⁡6θ)dθ=12(θ+16sin⁡6θ)∣0π6=π12 \begin{aligned}

S= \frac{1}{2}\int^{\beta}_{\alpha}\rho^{2}(\theta )d \theta &=2\cdot\frac{1}{2}\int^{\frac{\pi}{6}}_{0}\cos ^{2}3\theta d \theta \\

&=\frac{1}{2}\int^{\frac{\pi}{6}}_{0}(1+\cos 6\theta )d \theta \\

&=\frac{1}{2}(\theta + \frac{1}{6}\sin 6\theta )\Big|^{\frac{\pi}{6}}_{0}\\

&= \frac{\pi}{12}

\end{aligned}

S=21​∫αβ​ρ2(θ)dθ​=2⋅21​∫06π​​cos23θdθ=21​∫06π​​(1+cos6θ)dθ=21​(θ+61​sin6θ)∣∣​06π​​=12π​​

例3:过点(0,1)(0,1)(0,1)作曲线L:y=ln⁡xL:y=\ln xL:y=lnx的切线,切点为AAA,又 LLL与xxx轴交于BBB点,区域DDD由LLL与直线ABABAB围成,求区域DDD的面积及DDD绕xxx轴旋转一周所得旋转体的体积

![[附件/Pasted image 20220901093720.png]]

y−y0=1x0(x−x0)⇒1−ln⁡x0=−1⇒x0=e2 y-y_{0}=\frac{1}{x_{0}}(x-x_{0})\Rightarrow 1-\ln x_{0}=-1 \Rightarrow x_{0}=e^{2}

y−y0​=x0​1​(x−x0​)⇒1−lnx0​=−1⇒x0​=e2

y−1=k(x−0)⇒y=kx+1⇒{kx+1=ln⁡xk=1x⇒x=e2 y-1=k(x-0)\Rightarrow y=kx+1\Rightarrow \left\{\begin{aligned}&kx+1=\ln x\\&k=\frac{1}{x}\end{aligned}\right.\Rightarrow x=e^{2}

y−1=k(x−0)⇒y=kx+1⇒⎩⎨⎧​​kx+1=lnxk=x1​​⇒x=e2

可知CCC点坐标为(e2,2)(e^{2},2)(e2,2)

S=∫1e2ln⁡xdx−12(e2−1)2=2V=π∫1e2ln⁡2xdx−13⋅π22⋅(e2−1)=2π3(e2−1) \begin{aligned}

S&=\int^{e^{2}}_{1}\ln xdx- \frac{1}{2}(e^{2}-1)2=2\\

V&=\pi \int^{e^{2}}_{1}\ln ^{2}xdx- \frac{1}{3}\cdot \pi2^{2}\cdot (e^{2}-1)=\frac{2\pi}{3}(e^{2}-1)

\end{aligned}

SV​=∫1e2​lnxdx−21​(e2−1)2=2=π∫1e2​ln2xdx−31​⋅π22⋅(e2−1)=32π​(e2−1)​

例4:曲线y=∫0xtan⁡tdt(0≤x≤π4)y=\int^{x}_{0}\tan tdt(0\leq x\leq \frac{\pi}{4})y=∫0x​tantdt(0≤x≤4π​)的弧s=()s=()s=()

s=∫ab1+y′2dx=∫0π41+tan⁡2xdx=∫0π4sec⁡xdx=ln⁡(sec⁡x+tan⁡x)∣0π4=ln⁡(2+1) \begin{aligned}

s=\int^{b}_{a}\sqrt{1+y'^{2}}dx&=\int^{\frac{\pi}{4}}_{0}\sqrt{1+\tan ^{2}x}dx\\

&=\int^{\frac{\pi}{4}}_{0}\sec xdx\\

&=\ln (\sec x+\tan x)\Big|^{\frac{\pi}{4}}_{0}\\

&=\ln (\sqrt{2}+1)

\end{aligned}

s=∫ab​1+y′2​dx​=∫04π​​1+tan2x​dx=∫04π​​secxdx=ln(secx+tanx)∣∣​04π​​=ln(2​+1)​

例5:一容器的内侧是由图中曲线绕yyy轴旋转一周而成的曲面,该曲线由x2+y2=2y(y≥12)x^{2}+y^{2}=2y(y\geq \frac{1}{2})x2+y2=2y(y≥21​)与x2+y2=1(y≤12)x^{2}+y^{2}=1(y\leq \frac{1}{2})x2+y2=1(y≤21​)连接而成

  • 求容器容积

  • 若将容器内盛满的水从容器顶部全部抽出,至少需要做多少功

(长度单位mmm,重力加速度gm/s2g m/s^{2}gm/s2,水的密度为103kg/m310^{3} kg/m^{3}103kg/m3)

![[附件/Pasted image 20220901100107.png|250]]

在x2+y2=1(y≤12,x≥0)x^{2}+y^{2}=1(y\leq \frac{1}{2},x\geq0)x2+y2=1(y≤21​,x≥0)取一个dydydy的小薄片,则该小薄片绕yyy轴旋转的体积为

πx2dy\pi x^{2}dy πx2dy

其实用最基本的公式或二重积分都能做出来

V=2⋅π∫−112x2dy=2⋅π∫−112(1−y2)dy=9π4 V=2\cdot \pi \int^{\frac{1}{2}}_{-1}x^{2}dy=2 \cdot \pi \int^{\frac{1}{2}}_{-1}(1-y^{2})dy=\frac{9\pi}{4}

V=2⋅π∫−121​​x2dy=2⋅π∫−121​​(1−y2)dy=49π​

在x2+y2=1(y≤12)x^{2}+y^{2}=1(y\leq \frac{1}{2})x2+y2=1(y≤21​)取一个dydydy的小薄片,则该小薄片到y=2y=2y=2的距离SSS为

S=2−yS=2-y S=2−y

对于FFF,有

F=mg=ρVg=103⋅πx2⋅dy⋅gF=mg=\rho Vg=10^{3}\cdot \pi x^{2}\cdot dy \cdot g F=mg=ρVg=103⋅πx2⋅dy⋅g

对于x2+y2=2y(y≥12)x^{2}+y^{2}=2y(y\geq \frac{1}{2})x2+y2=2y(y≥21​)同理,换一个方程就行

W=103g∫−112π(1−y2)(2−y)dy+103g∫122π(2y−y2)(2−y)dy=278⋅103πg \begin{aligned}

W&=10^{3}g\int^{\frac{1}{2}}_{-1}\pi(1-y^{2})(2-y)dy+10^{3}g \int^{2}_{\frac{1}{2}}\pi(2y-y^{2})(2-y)dy\\

&=\frac{27}{8}\cdot 10^{3}\pi g

\end{aligned}

W​=103g∫−121​​π(1−y2)(2−y)dy+103g∫21​2​π(2y−y2)(2−y)dy=827​⋅103πg​

考虑一个薄层dydydy一般称为元素法(微元法)

例6:某闸门的形状与大小如图所示,其中yyy为对称轴,闸门的上部为矩形ABCDABCDABCD,DC=2mDC=2mDC=2m,下部由二次抛物线与线段ABABAB所围成,当水面与闸门的上端相平时,欲使闸门矩形承受的水压力与闸门下部承受的水压力之比为5:45:45:4,闸门矩形部分的高hhh应为多少

![[附件/Pasted image 20220901102043.png|150]]

F=PSF=PSF=PS

本题也是元素法,不做详细讲解

F1=2∫1h+1ρg(h+1−y)dy=2ρg[(h+1)y−y22]1h+1=ρgh2F2=2∫01ρg(h+1−y)ydy=2ρg[23(h+1)y32−25y52]01=4ρg(13h+215) \begin{aligned}

F_{1}&=2\int^{h+1}_{1}\rho g(h+1-y)dy=2\rho g\left[(h+1)y- \frac{y^{2}}{2}\right]^{h+1}_{1}\\

&=\rho gh^{2}\\

F_{2}&=2\int^{1}_{0}\rho g(h+1-y)\sqrt{y}dy=2\rho g\left[\frac{2}{3}\left(h+1\right)y^{\frac{3}{2}}- \frac{2}{5}y^{\frac{5}{2}}\right]^{1}_{0}\\

&=4 \rho g\left(\frac{1}{3}h+ \frac{2}{15}\right)

\end{aligned}

F1​F2​​=2∫1h+1​ρg(h+1−y)dy=2ρg[(h+1)y−2y2​]1h+1​=ρgh2=2∫01​ρg(h+1−y)y​dy=2ρg[32​(h+1)y23​−52​y25​]01​=4ρg(31​h+152​)​

因此,由题意得

h24(13h+215)=54⇒h=2,h=13 \frac{h^{2}}{4\left(\frac{1}{3}h+ \frac{2}{15}\right)}= \frac{5}{4}\Rightarrow h=2,h=\frac{1}{3}

4(31​h+152​)h2​=45​⇒h=2,h=31​

用Python的matplotlib绘图感觉有点麻烦,个人也没研究明白,暂时用GeoGebra绘图代替一下,所以最近的笔记绘图不会给出源代码了,如果有需要可以私信要一下GeoGebra源文件


About Joyk


Aggregate valuable and interesting links.
Joyk means Joy of geeK