8

面试题:海量数据处理利器-布隆过滤器 - 小牛呼噜噜

 1 year ago
source link: https://www.cnblogs.com/xiaoniuhululu/p/16736861.html
Go to the source link to view the article. You can view the picture content, updated content and better typesetting reading experience. If the link is broken, please click the button below to view the snapshot at that time.
neoserver,ios ssh client

面试题:海量数据处理利器-布隆过滤器 - 小牛呼噜噜 - 博客园

作者:小牛呼噜噜 | https://xiaoniuhululu.com
计算机内功、JAVA底层、面试相关资料等更多精彩文章在公众号「小牛呼噜噜 」

通常我们会遇到很多要判断一个元素是否在某个集合中的业务场景,一般想到的是将集合中所有元素保存起来,然后通过比较确定。链表、树、散列表(又叫哈希表,Hash table)等等数据结构都是这种思路。但是随着集合中元素的增加,我们需要的存储空间也会呈现线性增长,最终达到瓶颈。同时检索速度也越来越慢,上述三种结构的检索时间复杂度分别为O(n), O(logn), O(1)。这个时候,布隆过滤器就应运而生。
布隆过滤器(Bloom Filter)是1970年由布隆提出的。布隆过滤器其实就是一个很长的二进制向量和一系列随机映射函数。可以用于快速检索一个元素是否在一个集合中出现的方法。

如果想判断一个元素是不是在一个集合里,我们一般想到的是将所有元素保存起来,然后通过比较确定。我们熟悉的链表,树等等数据结构都是这种思路。但是随着集合中元素的增加,我们需要的存储空间越来越大,检索速度也越来越慢。不过世界上还有一种叫作散列表(又叫哈希表)的数据结构。它可以通过一个Hash函数将一个元素映射成一个位阵列中的一个点。这样一来,我们只要看看这个点是不是 1 就知道可以集合中有没有它了。这其实就是布隆过滤器的基本思想。

Hash算法面临的问题就是hash冲突。假设 Hash 函数是良好的,如果我们的位阵列长度为 m 个点,那么如果我们想将冲突率降低到例如 1%, 这个散列表就只能容纳 m/100 个元素。显然这就不叫空间有效了(Space-efficient)。解决方法:就是使用多个 Hash算法如果它们有一个说元素不在集合中,那肯定就不在。如果它们都说在,有一定可能性它们在说谎,虽然概率比较低

  1. 首先需要k个hash函数,每个函数可以把key散列成为1个整数
  2. 初始化时,需要一个长度为n比特的数组,每个比特位初始化为0
  3. 某个key加入集合时,用k个hash函数计算出k个散列值,并把数组中对应的比特位置为1
  4. 判断某个key是否在集合时,用k个hash函数计算出k个散列值,并查询数组中对应的比特位,如果所有的比特位都是1,认为在集合中。
图片来源于网络
  1. 空间效率和查询时间都比一般的算法要好的多,比如增加和查询元素的时间复杂为O(N)
  2. 由于不需要存储key,所以特别节省存储空间。
  3. 保密性强,布隆过滤器不存储元素本身~~
  1. 由于采用hash算法,可能出现hash冲突,导致有一定的误判率,但是可以通过调整参数来降低

布隆过滤器的误判是指多个输入经过哈希之后在相同的bit位置1了,这样就无法判断究竟是哪个输入产生的,因此误判的根源在于相同的 bit 位被多次映射且置 1。

  1. 无法获取元素本身
  2. 由于hash算法导致hash冲突必然存在,所以删除元素是很困难的,而且删掉元素会导致误判率增加。

布隆过滤器的使用场景

我们可以充分利用布隆过滤器的特点:如果布隆过滤器说有一个说元素不在集合中,那肯定就不在。如果布隆过滤器说在,有一定可能性它在说谎

  1. 比较热门的场景就是:解决Redis缓存穿透问题

缓存穿透: 指用户的请求去查询缓存和数据库中都不存在的数据,可用户还是源源不断的发起请求,导致每次请求都会打到数据库上,从而压垮数据库

  1. 邮件过滤,使用布隆过滤器来做邮件黑名单过滤,还有重复推荐内容过滤,网址过滤, web请求访问拦截器,等等
  2. 许多数据库内置布隆过滤器,用于判断数据是否存在,可以减少数据库很多不必要的磁盘IO操作

简单模拟布隆过滤器

我们来看一个例子:

public class MyBloomFilter {

    /**
     * 一个长度为10 亿的比特位
     */
    private static final int DEFAULT_SIZE = 256 << 22;

    /**
     * 为了降低错误率,使用加法hash算法,所以定义一个8个元素的质数数组
     */
    private static final int[] seeds = {3, 5, 7, 11, 13, 31, 37, 61};

    /**
     * 相当于构建 8 个不同的hash算法
     */
    private static HashFunction[] functions = new HashFunction[seeds.length];

    /**
     * 初始化布隆过滤器的 bitmap
     */
    private static BitSet bitset = new BitSet(DEFAULT_SIZE);

    /**
     * 添加数据
     *
     * @param value 需要加入的值
     */
    public static void add(String value) {
        if (value != null) {
            for (HashFunction f : functions) {
                //计算 hash 值并修改 bitmap 中相应位置为 true
                bitset.set(f.hash(value), true);
            }
        }
    }

    /**
     * 判断相应元素是否存在
     * @param value 需要判断的元素
     * @return 结果
     */
    public static boolean contains(String value) {
        if (value == null) {
            return false;
        }
        boolean ret = true;
        for (HashFunction f : functions) {
            ret = bitset.get(f.hash(value));
            //一个 hash 函数返回 false 则跳出循环
            if (!ret) {
                break;
            }
        }
        return ret;
    }

    /**
     * 模拟用户在不在线。。。
     */
    public static void main(String[] args) {

        for (int i = 0; i < seeds.length; i++) {
            functions[i] = new HashFunction(DEFAULT_SIZE, seeds[i]);
        }

        // 添加1亿数据
        for (int i = 0; i < 100000000; i++) {
            add(String.valueOf(i));
        }
        String id = "123456789";
        add(id);

        System.out.println(contains(id));   //结果: true
        System.out.println("" + contains("234567890"));  //结果: false
    }
}

class HashFunction {

    private int size;
    private int seed;

    public HashFunction(int size, int seed) {
        this.size = size;
        this.seed = seed;
    }

    public int hash(String value) {
        int result = 0;
        int len = value.length();
        for (int i = 0; i < len; i++) {
            result = seed * result + value.charAt(i);
        }
        int r = (size - 1) & result;
        return (size - 1) & result;
    }
}

我们平时学习的时候可以去实现一下算法,但实际开发过程中,一般不推荐重复造轮子,简单的实现布隆过滤器, 我们一般可以用google.guava

Guava布隆过滤器

首先引入依赖:

<dependency>
    <groupId>com.google.guava</groupId>
    <artifactId>guava</artifactId>
    <version>28.0-jre</version>
</dependency>

举个例子:

// 创建布隆过滤器对象,预计包含的数据量:2000个,和允许的误差值0.01
BloomFilter<Integer> filter = BloomFilter.create(
        Funnels.integerFunnel(),
        2000,
        0.01);

System.out.println(filter.mightContain(10));// 判断指定元素是否存在
System.out.println(filter.mightContain(20));
filter.put(10);// 将元素添加进布隆过滤器
filter.put(20);
System.out.println(filter.mightContain(10));// 判断指定元素是否存在
System.out.println(filter.mightContain(20));

其中:当mightContain()方法返回_true_时,我们可以大概率确定该元素在过滤器中,但当过滤器返回_false_时,我们可以100%确定该元素不存在于过滤器中。
布隆过滤器的 允许的误差值 越小,需要的存储空间就越大,对于不需要过于精确的场景,允许的误差值 设置稍大一点也可以。
Guava 提供的布隆过滤器的实现还是很不错的,但是随着微服务、分布式的不断发展,对于微服务多实例的场景下就不太适用了,只适合单机,解决方案是:一般是借助Redis中的布隆过滤器

Redis布隆过滤器

Redis 4.0 的时候官方提供了插件机制,布隆过滤器正式登场。以下网站可以下载官方提供的已经编译好的可拓展模块。
https://redis.com/redis-enterprise-software/download-center/modules

这边使用docker安装,自己挑选合适的镜像

~ docker pull redislabs/rebloom:latest
~ docker run -p 6379:6379 --name redis-bloom redislabs/rebloom:latest
~ docker exec -it redis-bloom bash 
root@113d012d35:/data# redis-cli
127.0.0.1:6379> 

进入容器内部后,常用的命令:

//-------------------------常用命令
BF.ADD --添加一个元素到布隆过滤器
BF.EXISTS --判断元素是否在布隆过滤器
BF.MADD --添加多个元素到布隆过滤器
BF.MEXISTS --判断多个元素是否在布隆过滤器

//-------------------------具体操作

127.0.0.1:6379> BF.ADD myFilter hello
(integer) 1
127.0.0.1:6379> BF.ADD myFilter people
(integer) 1
127.0.0.1:6379> BF.EXISTS myFilter hello
(integer) 1
127.0.0.1:6379> BF.EXISTS myFilter people
(integer) 1
127.0.0.1:6379> BF.EXISTS myFilter github
(integer) 0

布谷鸟过滤器

为了解决布隆过滤器不能删除元素的问题,布谷鸟过滤器应运而生。论文《Cuckoo Filter:Better Than Bloom》作者将布谷鸟过滤器和布隆过滤器进行了深入的对比。但是其删除并不完美,存在误删的概率,还存在插入复杂度比较高等问题。由于使用较少,本文就不过多介绍了,感兴趣的自行了解文章

参考资料:
https://www.cnblogs.com/feily/articles/14048396.html
https://www.cnblogs.com/liyulong1982/p/6013002.html


本篇文章到这里就结束啦,很感谢你能看到最后,如果觉得文章对你有帮助,别忘记关注我!更多精彩的文章

2795476-20220826100721393-1420221657.png#crop=0&crop=0&crop=1&crop=1&id=BQgZt&originHeight=624&originWidth=1710&originalType=binary&ratio=1&rotation=0&showTitle=false&status=done&style=none&title=

About Joyk


Aggregate valuable and interesting links.
Joyk means Joy of geeK