6

一文搞懂“享元模式”到底是什么?

 2 years ago
source link: https://blog.51cto.com/u_11440114/5341763
Go to the source link to view the article. You can view the picture content, updated content and better typesetting reading experience. If the link is broken, please click the button below to view the snapshot at that time.
neoserver,ios ssh client

Flyweight Design Pattern,结构型模式。享元模式中的“享元”指被共享的单元。享元模式通过复用对象,以达到节省内存的目的。

用于减少创建对象的数量,以减少内存占用和提高性能。尝试复用现有的同类对象,如果未找到匹配的对象,则创建新对象。

意图:运用共享技术有效地支持大量细粒度的对象。

主要解决:在有大量对象时,有可能会造成内存溢出,我们把其中共同的部分抽象出来,如果有相同的业务请求,直接返回在内存中已有的对象,避免重新创建。

大大减少对象的创建,降低系统的内存,使效率提高。

提高了系统的复杂度,需要分离出外部状态和内部状态,而且外部状态具有固有化的性质,不应该随着内部状态的变化而变化,否则会造成系统的混乱。

4 适用场景

1、系统中有大量对象 2、这些对象消耗大量内存 3、这些对象的状态大部分可以外部化。 4、这些对象可以按照内蕴状态分为很多组,当把外蕴对象从对象中剔除出来时,每一组对象都可以用一个对象来代替 5、系统不依赖于这些对象身份,这些对象是不可分辨的。

如何解决:用唯一标识码判断,如果在内存中有,则返回这个唯一标识码所标识的对象。

关键代码:用 HashMap 存储这些对象。

应用实例: 1、String,若有则返回,无则创建一个字符串保存在字符串缓存池 2、数据库的数据池。

1、系统有大量相似对象 2、需要缓冲池的场景

这些类必须有一个工厂对象加以控制

“享元”,被共享的单元,即复用对象,节省内存,注意前提是享元对象是不可变对象。

当一个系统中存在大量重复对象,若这些重复的对象是不可变对象,就能利用享元模式将对象设计成享元,在内存中只保留一份实例,供引用。这就减少内存中对象的数量,最终节省内存。

不仅相同对象可设计成享元,相似对象,也能提取对象中的相同部分(字段)设计成享元。

“不可变对象”:一旦通过构造器初始化完成后,其状态(对象的成员变量或属性)就不会再被修改。所以,不可变对象不能暴露任何set()等修改内部状态的方法。之所以要求享元是不可变对象,是因为它会被多处代码共享使用,避免一处代码对享元进行了修改,影响到其他使用它的代码。

6.1 象棋

一个游戏厅中有成千上万个“房间”,每个房间对应一个棋局。棋局要保存每个棋子的数据,比如:棋子类型(将、相、士、炮等)、棋子颜色(红方、黑方)、棋子在棋局中的位置。利用这些数据,我们就能显示一个完整的棋盘给玩家。具体的代码如下所示:

  • ChessPiece类表示棋子
  • ChessBoard类表示一个棋局,里面保存了象棋中30个棋子的信息
一文搞懂“享元模式”到底是什么?_享元模式
一文搞懂“享元模式”到底是什么?_缓存_02

为记录每个房间当前的棋局情况,要给每个房间都创建一个ChessBoard棋局对象。因为游戏大厅中有成千上万房间,保存这么多棋局对象就会消耗大量内存。如何节省内存呢?

就得用上享元模式啦。在内存中有大量相似对象。这些相似对象的id、text、color都一样,仅positionX、positionY不同。将棋子的id、text、color属性拆出来,设计成独立类,并且作为享元供多个棋盘复用。棋盘只需记录每个棋子的位置信息:

一文搞懂“享元模式”到底是什么?_享元模式_03
一文搞懂“享元模式”到底是什么?_缓存_04
一文搞懂“享元模式”到底是什么?_享元模式_05
一文搞懂“享元模式”到底是什么?_享元模式_06

利用工厂类缓存ChessPieceUnit信息(也就是id、text、color)。通过工厂类获取到的ChessPieceUnit就是享元。所有的ChessBoard对象共享这30个ChessPieceUnit对象(因为象棋中只有30个棋子)。在使用享元模式之前,记录1万个棋局,我们要创建30万(30*1万)个棋子的ChessPieceUnit对象。利用享元模式,我们只需要创建30个享元对象供所有棋局共享使用即可,大大节省了内存。

主要通过工厂模式,在工厂类中,通过Map缓存已创建过的享元对象,达到复用。

6.2 文本编辑器

假设该文本编辑器只实现文字编辑功能,不包含图片、表格等编辑。简化后的文本编辑器,要在内存中表示一个文本文件,只需记录文字和格式两部分信息。格式又包括文字的字体、大小、颜色等。

一般按文本类型(标题、正文……)设置文字格式,标题是一种格式,正文是另一种格式。但理论上,可以给文本文件中的每个文字都设置不同格式。为实现如此灵活的格式设置,并且代码实现又不太复杂,把每个文字都当作一个独立对象,并且在其中包含它的格式信息:

一文搞懂“享元模式”到底是什么?_复用_07
一文搞懂“享元模式”到底是什么?_复用_08

文本编辑器中,每敲一个字,就会调用Editor#appendCharacter(),创建一个新Character对象,保存到chars数组。若一个文本文件中,有上万、十几万、几十万的文字,就得在内存存储大量Character对象,如何节省一点内存?

其实一个文本文件中,用到的字体格式不多,毕竟不可能有人把每个文字都设置成不同格式吧。所以,字体格式可设计成享元,让不同文字共享:

public class CharacterStyle {

private Font font;

private int size;

private int colorRGB;

@Override
public boolean equals(Object o) {
CharacterStyle otherStyle = (CharacterStyle) o;
return font.equals(otherStyle.font)
&& size == otherStyle.size
&& colorRGB == otherStyle.colorRGB;
}
}

public class CharacterStyleFactory {
private static final List styles = new ArrayList<>();

public static CharacterStyle getStyle(Font font, int size, int colorRGB) {
CharacterStyle newStyle = new CharacterStyle(font, size, colorRGB);
for (CharacterStyle style : styles) {
if (style.equals(newStyle)) {
return style;
}
}
styles.add(newStyle);
return newStyle;
}
}

public class Character {

private char c;

private CharacterStyle style;
}

public class Editor {
private List chars = new ArrayList<>();

public void appendCharacter(char c, Font font, int size, int colorRGB) {
Character character = new Character(c, CharacterStyleFactory.getStyle(font, size, colorRGB));
chars.add(character);
}
}

6.3 Shape

我们将创建一个 Shape 接口和实现了 Shape 接口的实体类 Circle。下一步是定义工厂类 ShapeFactory。

ShapeFactory 有一个 Circle 的 HashMap,其中键名为 Circle 对象的颜色。无论何时接收到请求,都会创建一个特定颜色的圆。ShapeFactory 检查它的 HashMap 中的 circle 对象,如果找到 Circle 对象,则返回该对象,否则将创建一个存储在 hashmap 中以备后续使用的新对象,并把该对象返回到客户端。

FlyWeightPatternDemo,我们的演示类使用 ShapeFactory 来获取 Shape 对象。它将向 ShapeFactory 传递信息(red / green / blue/ black / white),以便获取它所需对象的颜色。

享元模式的 UML 图

一文搞懂“享元模式”到底是什么?_缓存_09

步骤 1 创建一个接口。

public interface Shape {
void draw();
}

步骤 2 创建实现接口的实体类。

@Data
public class Circle implements Shape {
private String color;
private int x;
private int y;
private int radius;

public Circle(String color){
this.color = color;
}

@Override
public void draw() {
System.out.println("Circle: Draw() [Color : " + color
+", x : " + x +", y :" + y +", radius :" + radius);
}
}

步骤 3 创建一个工厂,生成基于给定信息的实体类的对象。

import java.util.HashMap;

public class ShapeFactory {
private static final HashMap circleMap = new HashMap<>();

public static Shape getCircle(String color) {
Circle circle = (Circle)circleMap.get(color);

if(circle == null) {
circle = new Circle(color);
circleMap.put(color, circle);
System.out.println("Creating circle of color : " + color);
}
return circle;
}
},>

步骤 4 使用该工厂,通过传递颜色信息来获取实体类的对象。

public class FlyweightPatternDemo {
private static final String colors[] =
{ "Red", "Green", "Blue", "White", "Black" };
public static void main(String[] args) {

for(int i=0; i < 20; ++i) {
Circle circle =
(Circle)ShapeFactory.getCircle(getRandomColor());
circle.setX(getRandomX());
circle.setY(getRandomY());
circle.setRadius(100);
circle.draw();
}
}
private static String getRandomColor() {
return colors[(int)(Math.random()*colors.length)];
}
private static int getRandomX() {
return (int)(Math.random()*100 );
}
private static int getRandomY() {
return (int)(Math.random()*100);
}
}

步骤 5 执行程序,输出结果:

Creating circle of color : Black
Circle: Draw() [Color : Black, x : 36, y :71, radius :100
Creating circle of color : Green
Circle: Draw() [Color : Green, x : 27, y :27, radius :100
Creating circle of color : White
Circle: Draw() [Color : White, x : 64, y :10, radius :100
Creating circle of color : Red
Circle: Draw() [Color : Red, x : 15, y :44, radius :100
Circle: Draw() [Color : Green, x : 19, y :10, radius :100
Circle: Draw() [Color : Green, x : 94, y :32, radius :100
Circle: Draw() [Color : White, x : 69, y :98, radius :100
Creating circle of color : Blue
Circle: Draw() [Color : Blue, x : 13, y :4, radius :100
Circle: Draw() [Color : Green, x : 21, y :21, radius :100
Circle: Draw() [Color : Blue, x : 55, y :86, radius :100
Circle: Draw() [Color : White, x : 90, y :70, radius :100
Circle: Draw() [Color : Green, x : 78, y :3, radius :100
Circle: Draw() [Color : Green, x : 64, y :89, radius :100
Circle: Draw() [Color : Blue, x : 3, y :91, radius :100
Circle: Draw() [Color : Blue, x : 62, y :82, radius :100
Circle: Draw() [Color : Green, x : 97, y :61, radius :100
Circle: Draw() [Color : Green, x : 86, y :12, radius :100
Circle: Draw() [Color : Green, x : 38, y :93, radius :100
Circle: Draw() [Color : Red, x : 76, y :82, radius :100
Circle: Draw() [Color : Blue, x : 95, y :82, radius :100

6.4 Integer

Integer i1 = 56;
Integer i2 = 56;
Integer i3 = 129;
Integer i4 = 129;
System.out.println(i1 == i2);
System.out.println(i3 == i4);

Java为基本数据类型提供了对应包装器:

一文搞懂“享元模式”到底是什么?_缓存_10
Integer i = 56; //自动装箱
int j = i; //自动拆箱

数值56是基本数据类型int,当赋值给包装器类型(Integer)变量的时候,触发自动装箱操作,创建一个Integer类型的对象,并且赋值给变量i。底层相当于执行:

Integer i = 59;底层执行了:Integer i = Integer.valueOf(59);

反过来,当把包装器类型的变量i,赋值给基本数据类型变量j的时候,触发自动拆箱操作,将i中的数据取出,赋值给j。其底层相当于执行了下面这条语句:

int j = i; 底层执行了:int j = i.intValue();

Java对象在内存的存储

User a = new User(123, 23); // id=123, age=23

内存存储结构图:a存储的值是User对象的内存地址,即a指向User对象

一文搞懂“享元模式”到底是什么?_缓存_11

通过“==”判定相等时,实际上是在判断两个局部变量存储的地址是否相同,即判断两个局部变量是否指向相同对象。

Integer i1 = 56;
Integer i2 = 56;
Integer i3 = 129;
Integer i4 = 129;
System.out.println(i1 == i2);
System.out.println(i3 == i4);

前4行赋值语句都会触发自动装箱操作,即创建Integer对象并赋值给i1、i2、i3、i4变量。i1、i2尽管存储数值相同56,但指向不同Integer对象,所以通过“”来判定是否相同的时候,会返回false。同理,i3i4判定语句也会返回false。

不过,上面的分析还是不对,答案并非是两个false,而是一个true,一个false。因为Integer用了享元模式复用对象,才导致这样的运行差异。通过自动装箱,即调用valueOf()创建Integer对象时,如果要创建的Integer对象的值在-128到127之间,会从IntegerCache类中直接返回,否则才调用new方法创建:

public static Integer valueOf(int i) {
if (i >= IntegerCache.low && i <= IntegerCache.high)
return IntegerCache.cache[i + (-IntegerCache.low)];
return new Integer(i);
}

实际上,这里的IntegerCache相当于,我们上一节课中讲的生成享元对象的工厂类,只不过名字不叫xxxFactory而已。我们来看它的具体代码实现。这个类是Integer的内部类,你也可以自行查看JDK源码。

/**
* Cache to support the object identity semantics of autoboxing for values between
* -128 and 127 (inclusive) as required by JLS.
*
* The cache is initialized on first usage. The size of the cache
* may be controlled by the {@code -XX:AutoBoxCacheMax=} option.
* During VM initialization, java.lang.Integer.IntegerCache.high property
* may be set and saved in the private system properties in the
* sun.misc.VM class.
*/
private static class IntegerCache {
static final int low = -128;
static final int high;
static final Integer cache[];

static {
// high value may be configured by property
int h = 127;
String integerCacheHighPropValue =
sun.misc.VM.getSavedProperty("java.lang.Integer.IntegerCache.high");
if (integerCacheHighPropValue != null) {
try {
int i = parseInt(integerCacheHighPropValue);
i = Math.max(i, 127);
// Maximum array size is Integer.MAX_VALUE
h = Math.min(i, Integer.MAX_VALUE - (-low) -1);
} catch( NumberFormatException nfe) {
// If the property cannot be parsed into an int, ignore it.
}
}
high = h;

cache = new Integer[(high - low) + 1];
int j = low;
for(int k = 0; k < cache.length; k++)
cache[k] = new Integer(j++);

// range [-128, 127] must be interned (JLS7 5.1.7)
assert IntegerCache.high >= 127;
}

private IntegerCache() {}
}

为什么IntegerCache只缓存-128到127之间的整型值呢?

在IntegerCache的代码实现中,当这个类被加载的时候,缓存的享元对象会被集中一次性创建好。毕竟整型值太多了,我们不可能在IntegerCache类中预先创建好所有的整型值,这样既占用太多内存,也使得加载IntegerCache类的时间过长。所以,我们只能选择缓存对于大部分应用来说最常用的整型值,也就是一个字节的大小(-128到127之间的数据)。

实际上,JDK也提供了方法来让我们可以自定义缓存的最大值,有下面两种方式。如果你通过分析应用的JVM内存占用情况,发现-128到255之间的数据占用的内存比较多,你就可以用如下方式,将缓存的最大值从127调整到255。不过,这里注意一下,JDK并没有提供设置最小值的方法。

//方法一:
-Djava.lang.Integer.IntegerCache.high=255
//方法二:
-XX:AutoBoxCacheMax=255

现在,让我们再回到最开始的问题,因为56处于-128和127之间,i1和i2会指向相同的享元对象,所以i1i2返回true。而129大于127,并不会被缓存,每次都会创建一个全新的对象,也就是说,i3和i4指向不同的Integer对象,所以i3i4返回false。

实际上,除了Integer类型之外,其他包装器类型,比如Long、Short、Byte等,也都利用了享元模式来缓存-128到127之间的数据。比如,Long类型对应的LongCache享元工厂类及valueOf()函数代码如下所示:

private static class LongCache {
private LongCache(){}

static final Long cache[] = new Long[-(-128) + 127 + 1];

static {
for(int i = 0; i < cache.length; i++)
cache[i] = new Long(i - 128);
}
}

public static Long valueOf(long l) {
final int offset = 128;
if (l >= -128 && l <= 127) { // will cache
return LongCache.cache[(int)l + offset];
}
return new Long(l);
}

在我们平时的开发中,对于下面这样三种创建整型对象的方式,我们优先使用后两种。

Integer a = new Integer(123);
Integer a = 123;
Integer a = Integer.valueOf(123);

第一种创建方式并不会使用到IntegerCache,而后面两种创建方法可以利用IntegerCache缓存,返回共享的对象,以达到节省内存的目的。举一个极端一点的例子,假设程序需要创建1万个-128到127之间的Integer对象。使用第一种创建方式,我们需要分配1万个Integer对象的内存空间;使用后两种创建方式,我们最多只需要分配256个Integer对象的内存空间。

6.5 String

String s1 = "JavaEdge";
String s2 = "JavaEdge";
String s3 = new String("JavaEdge");

// true
System.out.println(s1 == s2);
// false
System.out.println(s1 == s3);

跟Integer设计相似,String利用享元模式复用相同字符串常量(即“JavaEdge”)。JVM会专门开辟一块存储区来存储字符串常量,即“字符串常量池”,对应内存存储结构示意图:

一文搞懂“享元模式”到底是什么?_缓存_12
  • Integer类要共享对象,是在类加载时,一次性全部创建好
  • 字符串,没法预知要共享哪些字符串常量,所以无法事先创建,只能在某字符串常量第一次被用到时,存储到常量池,再用到时,直接引用常量池中已存在的

7 竞品对比

7.1 V.S 单例

  • 单例模式,一个类只能创建一个对象
  • 享元模式,一个类可以创建多个对象,每个对象被多处代码引用共享。实际上,享元模式有点类似于之前讲到的单例的变体:多例。

区别设计模式,不能光看代码,而要看设计意图,即要解决啥问题。享元模式是为对象复用,节省内存,单例模式是为限制对象个数。

7.2 V.S 缓存

享元模式实现,通过工厂类来“缓存”已经创建好的对象。这里的“缓存”实际上是“存储”的意思,跟我们平时所说的“数据库缓存”“CPU缓存”“MemCache缓存”是两回事。我们平时所讲的缓存,主要是为了提高访问效率,而非复用。

7.3 V.S 对象池

C++内存管理由程序员负责。为避免频繁地进行对象创建和释放导致内存碎片,可以预先申请一片连续的内存空间,即对象池。每次创建对象时,我们从对象池中直接取出一个空闲对象来使用,对象使用完成之后,再放回到对象池中以供后续复用,而非直接释放掉。

虽然对象池、连接池、线程池、享元模式都是为复用,但对象池、连接池、线程池等池化技术中的“复用”和享元模式中的“复用”是不同概念:

  • 池化技术中的“复用”可以理解为“重复使用”,主要目的是节省时间(比如从数据库池中取一个连接,不需要重新创建)。在任意时刻,每一个对象、连接、线程,并不会被多处使用,而是被一个使用者独占,当使用完成之后,放回到池中,再由其他使用者重复利用
  • 享元模式中的“复用”可以理解为“共享使用”,在整个生命周期中,都是被所有使用者共享的,主要目的是节省空间

1.享元模式的原理

所谓“享元”,顾名思义就是被共享的单元。享元模式的意图是复用对象,节省内存,前提是享元对象是不可变对象。具体来讲,当一个系统中存在大量重复对象的时候,我们就可以利用享元模式,将对象设计成享元,在内存中只保留一份实例,供多处代码引用,这样可以减少内存中对象的数量,以起到节省内存的目的。实际上,不仅仅相同对象可以设计成享元,对于相似对象,我们也可以将这些对象中相同的部分(字段),提取出来设计成享元,让这些大量相似对象引用这些享元。

2.享元模式的实现

享元模式的代码实现非常简单,主要是通过工厂模式,在工厂类中,通过一个Map或者List来缓存已经创建好的享元对象,以达到复用的目的。

3.享元模式VS单例、缓存、对象池

区别设计模式,不能光看代码,而要看设计意图,即要解决的问题。

  • 单例模式是为了保证对象全局唯一
  • 享元模式是为了实现对象复用,节省内存。缓存是为了提高访问效率,而非复用
  • 池化技术中的“复用”理解为“重复使用”,主要是为了节省时间

Integer的-128到127之间整型对象会被事先创建好,缓存在IntegerCache类。当使用自动装箱或valueOf()创建这个数值区间的整型对象时,会复用IntegerCache类事先创建好的对象。IntegerCache类就是享元工厂类,事先创建好的整型对象就是享元对象。

String类,JVM开辟一块存储区(字符串常量池)存储字符串常量,类似Integer的IntegerCache。但并非事先创建好需要共享的对象,而是在程序运行期间,根据需要创建和缓存字符串常量

享元模式对JVM的GC不友好。因为享元工厂类一直保存对享元对象的引用,导致享元对象在无任何代码使用时,也不会被GC。因此,在某些情况下,若对象生命周期很短,也不会被密集使用,利用享元模式反倒浪费更多内存。所以,务必验证享元模式真的能大省内存吗。


About Joyk


Aggregate valuable and interesting links.
Joyk means Joy of geeK