4

Squid and Octopus Genome Studies Reveal How Cephalopods’ Unique Traits Evolved

 2 years ago
source link: https://www.mbl.edu/news/squid-and-octopus-genome-studies-reveal-how-cephalopods-unique-traits-evolved
Go to the source link to view the article. You can view the picture content, updated content and better typesetting reading experience. If the link is broken, please click the button below to view the snapshot at that time.
neoserver,ios ssh client

Squid and Octopus Genome Studies Reveal How Cephalopods’ Unique Traits Evolved

The Hawaiian bobtail squid, Euprymna scolopes, is a model system for studying animal-bacterial symbiosis. Credit: Tom Kleindinst
The Hawaiian bobtail squid (Euprymna scolopes) is a model system for studying animal-bacterial symbiosis. Credit: Tom Kleindinst

WOODS HOLE, Mass. – Squid, octopus, and cuttlefish – even to scientists who study them – are wonderfully weird creatures. Known as the soft-bodied or coleoid cephalopods, they have the largest nervous system of any invertebrate, complex behaviors such as instantaneous camouflage, arms studded with dexterous suckers, and other evolutionarily unique traits.

Now, scientists have dug into the cephalopod genome to understand how these unusual animals came to be. Along the way, they discovered cephalopod genomes are as weird as the animals are. Scientists from the Marine Biological Laboratory (MBL) in Woods Hole, the University of Vienna, the University of Chicago, the Okinawa Institute of Science and Technology and the University of California, Berkeley, reported their findings in two new studies in Nature Communications.  

“Large and elaborate brains have evolved a couple of times,” said co-lead author Caroline Albertin, Hibbitt Fellow at the MBL. “One famous example is the vertebrates. The other is the soft-bodied cephalopods, which serve as a separate example for how a large and complicated nervous system can be put together. By understanding the cephalopod genome, we can gain insight into the genes that are important in setting up the nervous system, as well as into neuronal function.”

In Albertin et al., published this week, the team analyzed and compared the genomes of three cephalopod species – two squids (Doryteuthis pealeii and Euprymna scolopes) and an octopus (Octopus bimaculoides).

Sequencing these three cephalopod genomes, never mind comparing them, was a tour de force funded by the Grass Foundation that took place over several years in labs around the world.

“Probably the greatest advance in this new work is providing chromosomal-level assemblies of no less than three cephalopod genomes, all of which are available for study at the MBL,” said co-author Clifton Ragsdale, professor of Neurobiology and of Biology and Anatomy at the University of Chicago.

“Chromosomal-level assemblies allowed us to better refine what genes are there and what their order is, because the genome is less fragmented,” Albertin said. “So now we can start to study the regulatory elements that may be driving expression of these genes.”

In the end, comparing the genomes led the scientists to conclude that evolution of novel traits in soft-bodied cephalopods is mediated, in part, by three factors:

  • Massive reorganization of the cephalopod genome early in evolution. Strikingly, the cephalopod genome "is incredibly churned up," Albertin said.
  • Expansion of particular gene families.
  • Large-scale editing of messenger RNA molecules, especially in nervous system tissues.

“Comparing the gene content of cephalopod chromosomes allowed us to take the first fundamental steps at deciphering the evolution of cephalopod genomes,” said study co-author Hannah Schmidbaur of the University of Vienna.

Why did These Cephalopods Make the Cut?

These three cephalopod species were chosen for study given their past and future importance to scientific research. “We can learn a lot about an animal by sequencing its genome, and the genome provides an important toolkit for any sort of investigations going forward,” Albertin said.

They are:

  • The Atlantic longfin inshore squid (Doryteuthis pealeii).  Nearly a century of research on this squid at the MBL and elsewhere has revealed fundamental principles of neurotransmission (some discoveries garnering a Nobel Prize). Yet this is the first report of the genome sequence of this well-studied squid (in Albertin et al., funded by the Grass Foundation). Two years ago, an MBL team achieved the first gene knockout in a cephalopod using Doryteuthis pealeii, taking advantage of preliminary genomic sequence data and CRISPr-Cas9 genome editing.
  • The Hawaiian bobtail squid (Euprymna scolopes). A glowing bacterium lives inside a unique “light organ” in the squid, to the mutual benefit of both. This species has become a model system for studying animal-bacterial symbiosis and other aspects of development. A draft E. scolopes genome assembly was published in 2019.
  • The California two-spot octopus (Octopus bimaculoides). A relative newcomer on the block of scientific research, this was the first octopus genome ever sequenced. Albertin co-led the team that published its draft genome in 2015.

About Joyk


Aggregate valuable and interesting links.
Joyk means Joy of geeK