5

i8 - Rust

 2 years ago
source link: https://doc.rust-lang.org/stable/std/primitive.i8.html
Go to the source link to view the article. You can view the picture content, updated content and better typesetting reading experience. If the link is broken, please click the button below to view the snapshot at that time.
neoserver,ios ssh client

Implementations

pub const MIN: i8

The smallest value that can be represented by this integer type, -27.

Examples

Basic usage:

assert_eq!(i8::MIN, -128);
Run

pub const MAX: i8

The largest value that can be represented by this integer type, 27 - 1.

Examples

Basic usage:

assert_eq!(i8::MAX, 127);
Run

pub const BITS: u32

The size of this integer type in bits.

Examples
assert_eq!(i8::BITS, 8);
Run

Converts a string slice in a given base to an integer.

The string is expected to be an optional + or - sign followed by digits. Leading and trailing whitespace represent an error. Digits are a subset of these characters, depending on radix:

  • 0-9
  • a-z
  • A-Z
Panics

This function panics if radix is not in the range from 2 to 36.

Examples

Basic usage:

assert_eq!(i8::from_str_radix("A", 16), Ok(10));
Run

pub const fn count_ones(self) -> u32

Returns the number of ones in the binary representation of self.

Examples

Basic usage:

let n = 0b100_0000i8;

assert_eq!(n.count_ones(), 1);
Run

pub const fn count_zeros(self) -> u32

Returns the number of zeros in the binary representation of self.

Examples

Basic usage:

assert_eq!(i8::MAX.count_zeros(), 1);
Run

pub const fn leading_zeros(self) -> u32

Returns the number of leading zeros in the binary representation of self.

Examples

Basic usage:

let n = -1i8;

assert_eq!(n.leading_zeros(), 0);
Run

pub const fn trailing_zeros(self) -> u32

Returns the number of trailing zeros in the binary representation of self.

Examples

Basic usage:

let n = -4i8;

assert_eq!(n.trailing_zeros(), 2);
Run

pub const fn leading_ones(self) -> u32

Returns the number of leading ones in the binary representation of self.

Examples

Basic usage:

let n = -1i8;

assert_eq!(n.leading_ones(), 8);
Run

pub const fn trailing_ones(self) -> u32

Returns the number of trailing ones in the binary representation of self.

Examples

Basic usage:

let n = 3i8;

assert_eq!(n.trailing_ones(), 2);
Run

pub const fn rotate_left(self, n: u32) -> i8

Shifts the bits to the left by a specified amount, n, wrapping the truncated bits to the end of the resulting integer.

Please note this isn’t the same operation as the << shifting operator!

Examples

Basic usage:

let n = -0x7ei8;
let m = 0xa;

assert_eq!(n.rotate_left(2), m);
Run

pub const fn rotate_right(self, n: u32) -> i8

Shifts the bits to the right by a specified amount, n, wrapping the truncated bits to the beginning of the resulting integer.

Please note this isn’t the same operation as the >> shifting operator!

Examples

Basic usage:

let n = 0xai8;
let m = -0x7e;

assert_eq!(n.rotate_right(2), m);
Run

pub const fn swap_bytes(self) -> i8

Reverses the byte order of the integer.

Examples

Basic usage:

let n = 0x12i8;

let m = n.swap_bytes();

assert_eq!(m, 0x12);
Run

pub const fn reverse_bits(self) -> i8

Reverses the order of bits in the integer. The least significant bit becomes the most significant bit, second least-significant bit becomes second most-significant bit, etc.

Examples

Basic usage:

let n = 0x12i8;
let m = n.reverse_bits();

assert_eq!(m, 0x48);
assert_eq!(0, 0i8.reverse_bits());
Run

pub const fn from_be(x: i8) -> i8

Converts an integer from big endian to the target’s endianness.

On big endian this is a no-op. On little endian the bytes are swapped.

Examples

Basic usage:

let n = 0x1Ai8;

if cfg!(target_endian = "big") {
    assert_eq!(i8::from_be(n), n)
} else {
    assert_eq!(i8::from_be(n), n.swap_bytes())
}
Run

pub const fn from_le(x: i8) -> i8

Converts an integer from little endian to the target’s endianness.

On little endian this is a no-op. On big endian the bytes are swapped.

Examples

Basic usage:

let n = 0x1Ai8;

if cfg!(target_endian = "little") {
    assert_eq!(i8::from_le(n), n)
} else {
    assert_eq!(i8::from_le(n), n.swap_bytes())
}
Run

pub const fn to_be(self) -> i8

Converts self to big endian from the target’s endianness.

On big endian this is a no-op. On little endian the bytes are swapped.

Examples

Basic usage:

let n = 0x1Ai8;

if cfg!(target_endian = "big") {
    assert_eq!(n.to_be(), n)
} else {
    assert_eq!(n.to_be(), n.swap_bytes())
}
Run

pub const fn to_le(self) -> i8

Converts self to little endian from the target’s endianness.

On little endian this is a no-op. On big endian the bytes are swapped.

Examples

Basic usage:

let n = 0x1Ai8;

if cfg!(target_endian = "little") {
    assert_eq!(n.to_le(), n)
} else {
    assert_eq!(n.to_le(), n.swap_bytes())
}
Run

pub const fn checked_add(self, rhs: i8) -> Option<i8>

Checked integer addition. Computes self + rhs, returning None if overflow occurred.

Examples

Basic usage:

assert_eq!((i8::MAX - 2).checked_add(1), Some(i8::MAX - 1));
assert_eq!((i8::MAX - 2).checked_add(3), None);
Run

pub unsafe fn unchecked_add(self, rhs: i8) -> i8

🔬 This is a nightly-only experimental API. (unchecked_math #85122)

Unchecked integer addition. Computes self + rhs, assuming overflow cannot occur.

Safety

This results in undefined behavior when self + rhs > i8::MAX or self + rhs < i8::MIN, i.e. when checked_add would return None.

🔬 This is a nightly-only experimental API. (mixed_integer_ops #87840)

Checked addition with an unsigned integer. Computes self + rhs, returning None if overflow occurred.

Examples

Basic usage:

assert_eq!(1i8.checked_add_unsigned(2), Some(3));
assert_eq!((i8::MAX - 2).checked_add_unsigned(3), None);
Run

pub const fn checked_sub(self, rhs: i8) -> Option<i8>

Checked integer subtraction. Computes self - rhs, returning None if overflow occurred.

Examples

Basic usage:

assert_eq!((i8::MIN + 2).checked_sub(1), Some(i8::MIN + 1));
assert_eq!((i8::MIN + 2).checked_sub(3), None);
Run

pub unsafe fn unchecked_sub(self, rhs: i8) -> i8

🔬 This is a nightly-only experimental API. (unchecked_math #85122)

Unchecked integer subtraction. Computes self - rhs, assuming overflow cannot occur.

Safety

This results in undefined behavior when self - rhs > i8::MAX or self - rhs < i8::MIN, i.e. when checked_sub would return None.

🔬 This is a nightly-only experimental API. (mixed_integer_ops #87840)

Checked subtraction with an unsigned integer. Computes self - rhs, returning None if overflow occurred.

Examples

Basic usage:

assert_eq!(1i8.checked_sub_unsigned(2), Some(-1));
assert_eq!((i8::MIN + 2).checked_sub_unsigned(3), None);
Run

pub const fn checked_mul(self, rhs: i8) -> Option<i8>

Checked integer multiplication. Computes self * rhs, returning None if overflow occurred.

Examples

Basic usage:

assert_eq!(i8::MAX.checked_mul(1), Some(i8::MAX));
assert_eq!(i8::MAX.checked_mul(2), None);
Run

pub unsafe fn unchecked_mul(self, rhs: i8) -> i8

🔬 This is a nightly-only experimental API. (unchecked_math #85122)

Unchecked integer multiplication. Computes self * rhs, assuming overflow cannot occur.

Safety

This results in undefined behavior when self * rhs > i8::MAX or self * rhs < i8::MIN, i.e. when checked_mul would return None.

pub const fn checked_div(self, rhs: i8) -> Option<i8>

Checked integer division. Computes self / rhs, returning None if rhs == 0 or the division results in overflow.

Examples

Basic usage:

assert_eq!((i8::MIN + 1).checked_div(-1), Some(127));
assert_eq!(i8::MIN.checked_div(-1), None);
assert_eq!((1i8).checked_div(0), None);
Run

pub const fn checked_div_euclid(self, rhs: i8) -> Option<i8>

Checked Euclidean division. Computes self.div_euclid(rhs), returning None if rhs == 0 or the division results in overflow.

Examples

Basic usage:

assert_eq!((i8::MIN + 1).checked_div_euclid(-1), Some(127));
assert_eq!(i8::MIN.checked_div_euclid(-1), None);
assert_eq!((1i8).checked_div_euclid(0), None);
Run

pub const fn checked_rem(self, rhs: i8) -> Option<i8>

Checked integer remainder. Computes self % rhs, returning None if rhs == 0 or the division results in overflow.

Examples

Basic usage:


assert_eq!(5i8.checked_rem(2), Some(1));
assert_eq!(5i8.checked_rem(0), None);
assert_eq!(i8::MIN.checked_rem(-1), None);
Run

pub const fn checked_rem_euclid(self, rhs: i8) -> Option<i8>

Checked Euclidean remainder. Computes self.rem_euclid(rhs), returning None if rhs == 0 or the division results in overflow.

Examples

Basic usage:

assert_eq!(5i8.checked_rem_euclid(2), Some(1));
assert_eq!(5i8.checked_rem_euclid(0), None);
assert_eq!(i8::MIN.checked_rem_euclid(-1), None);
Run

pub const fn checked_neg(self) -> Option<i8>

Checked negation. Computes -self, returning None if self == MIN.

Examples

Basic usage:


assert_eq!(5i8.checked_neg(), Some(-5));
assert_eq!(i8::MIN.checked_neg(), None);
Run

pub const fn checked_shl(self, rhs: u32) -> Option<i8>

Checked shift left. Computes self << rhs, returning None if rhs is larger than or equal to the number of bits in self.

Examples

Basic usage:

assert_eq!(0x1i8.checked_shl(4), Some(0x10));
assert_eq!(0x1i8.checked_shl(129), None);
Run

pub unsafe fn unchecked_shl(self, rhs: i8) -> i8

🔬 This is a nightly-only experimental API. (unchecked_math #85122)

Unchecked shift left. Computes self << rhs, assuming that rhs is less than the number of bits in self.

Safety

This results in undefined behavior if rhs is larger than or equal to the number of bits in self, i.e. when checked_shl would return None.

pub const fn checked_shr(self, rhs: u32) -> Option<i8>

Checked shift right. Computes self >> rhs, returning None if rhs is larger than or equal to the number of bits in self.

Examples

Basic usage:

assert_eq!(0x10i8.checked_shr(4), Some(0x1));
assert_eq!(0x10i8.checked_shr(128), None);
Run

pub unsafe fn unchecked_shr(self, rhs: i8) -> i8

🔬 This is a nightly-only experimental API. (unchecked_math #85122)

Unchecked shift right. Computes self >> rhs, assuming that rhs is less than the number of bits in self.

Safety

This results in undefined behavior if rhs is larger than or equal to the number of bits in self, i.e. when checked_shr would return None.

pub const fn checked_abs(self) -> Option<i8>

Checked absolute value. Computes self.abs(), returning None if self == MIN.

Examples

Basic usage:


assert_eq!((-5i8).checked_abs(), Some(5));
assert_eq!(i8::MIN.checked_abs(), None);
Run

pub const fn checked_pow(self, exp: u32) -> Option<i8>

Checked exponentiation. Computes self.pow(exp), returning None if overflow occurred.

Examples

Basic usage:

assert_eq!(8i8.checked_pow(2), Some(64));
assert_eq!(i8::MAX.checked_pow(2), None);
Run

pub const fn saturating_add(self, rhs: i8) -> i8

Saturating integer addition. Computes self + rhs, saturating at the numeric bounds instead of overflowing.

Examples

Basic usage:

assert_eq!(100i8.saturating_add(1), 101);
assert_eq!(i8::MAX.saturating_add(100), i8::MAX);
assert_eq!(i8::MIN.saturating_add(-1), i8::MIN);
Run
🔬 This is a nightly-only experimental API. (mixed_integer_ops #87840)

Saturating addition with an unsigned integer. Computes self + rhs, saturating at the numeric bounds instead of overflowing.

Examples

Basic usage:

assert_eq!(1i8.saturating_add_unsigned(2), 3);
assert_eq!(i8::MAX.saturating_add_unsigned(100), i8::MAX);
Run

pub const fn saturating_sub(self, rhs: i8) -> i8

Saturating integer subtraction. Computes self - rhs, saturating at the numeric bounds instead of overflowing.

Examples

Basic usage:

assert_eq!(100i8.saturating_sub(127), -27);
assert_eq!(i8::MIN.saturating_sub(100), i8::MIN);
assert_eq!(i8::MAX.saturating_sub(-1), i8::MAX);
Run
🔬 This is a nightly-only experimental API. (mixed_integer_ops #87840)

Saturating subtraction with an unsigned integer. Computes self - rhs, saturating at the numeric bounds instead of overflowing.

Examples

Basic usage:

assert_eq!(100i8.saturating_sub_unsigned(127), -27);
assert_eq!(i8::MIN.saturating_sub_unsigned(100), i8::MIN);
Run

pub const fn saturating_neg(self) -> i8

Saturating integer negation. Computes -self, returning MAX if self == MIN instead of overflowing.

Examples

Basic usage:

assert_eq!(100i8.saturating_neg(), -100);
assert_eq!((-100i8).saturating_neg(), 100);
assert_eq!(i8::MIN.saturating_neg(), i8::MAX);
assert_eq!(i8::MAX.saturating_neg(), i8::MIN + 1);
Run

pub const fn saturating_abs(self) -> i8

Saturating absolute value. Computes self.abs(), returning MAX if self == MIN instead of overflowing.

Examples

Basic usage:

assert_eq!(100i8.saturating_abs(), 100);
assert_eq!((-100i8).saturating_abs(), 100);
assert_eq!(i8::MIN.saturating_abs(), i8::MAX);
assert_eq!((i8::MIN + 1).saturating_abs(), i8::MAX);
Run

pub const fn saturating_mul(self, rhs: i8) -> i8

Saturating integer multiplication. Computes self * rhs, saturating at the numeric bounds instead of overflowing.

Examples

Basic usage:


assert_eq!(10i8.saturating_mul(12), 120);
assert_eq!(i8::MAX.saturating_mul(10), i8::MAX);
assert_eq!(i8::MIN.saturating_mul(10), i8::MIN);
Run

pub const fn saturating_div(self, rhs: i8) -> i8

Saturating integer division. Computes self / rhs, saturating at the numeric bounds instead of overflowing.

Examples

Basic usage:

assert_eq!(5i8.saturating_div(2), 2);
assert_eq!(i8::MAX.saturating_div(-1), i8::MIN + 1);
assert_eq!(i8::MIN.saturating_div(-1), i8::MAX);
Run
let _ = 1i8.saturating_div(0);
Run

pub const fn saturating_pow(self, exp: u32) -> i8

Saturating integer exponentiation. Computes self.pow(exp), saturating at the numeric bounds instead of overflowing.

Examples

Basic usage:


assert_eq!((-4i8).saturating_pow(3), -64);
assert_eq!(i8::MIN.saturating_pow(2), i8::MAX);
assert_eq!(i8::MIN.saturating_pow(3), i8::MIN);
Run

pub const fn wrapping_add(self, rhs: i8) -> i8

Wrapping (modular) addition. Computes self + rhs, wrapping around at the boundary of the type.

Examples

Basic usage:

assert_eq!(100i8.wrapping_add(27), 127);
assert_eq!(i8::MAX.wrapping_add(2), i8::MIN + 1);
Run
🔬 This is a nightly-only experimental API. (mixed_integer_ops #87840)

Wrapping (modular) addition with an unsigned integer. Computes self + rhs, wrapping around at the boundary of the type.

Examples

Basic usage:

assert_eq!(100i8.wrapping_add_unsigned(27), 127);
assert_eq!(i8::MAX.wrapping_add_unsigned(2), i8::MIN + 1);
Run

pub const fn wrapping_sub(self, rhs: i8) -> i8

Wrapping (modular) subtraction. Computes self - rhs, wrapping around at the boundary of the type.

Examples

Basic usage:

assert_eq!(0i8.wrapping_sub(127), -127);
assert_eq!((-2i8).wrapping_sub(i8::MAX), i8::MAX);
Run
🔬 This is a nightly-only experimental API. (mixed_integer_ops #87840)

Wrapping (modular) subtraction with an unsigned integer. Computes self - rhs, wrapping around at the boundary of the type.

Examples

Basic usage:

assert_eq!(0i8.wrapping_sub_unsigned(127), -127);
assert_eq!((-2i8).wrapping_sub_unsigned(u8::MAX), -1);
Run

pub const fn wrapping_mul(self, rhs: i8) -> i8

Wrapping (modular) multiplication. Computes self * rhs, wrapping around at the boundary of the type.

Examples

Basic usage:

assert_eq!(10i8.wrapping_mul(12), 120);
assert_eq!(11i8.wrapping_mul(12), -124);
Run

pub const fn wrapping_div(self, rhs: i8) -> i8

Wrapping (modular) division. Computes self / rhs, wrapping around at the boundary of the type.

The only case where such wrapping can occur is when one divides MIN / -1 on a signed type (where MIN is the negative minimal value for the type); this is equivalent to -MIN, a positive value that is too large to represent in the type. In such a case, this function returns MIN itself.

Panics

This function will panic if rhs is 0.

Examples

Basic usage:

assert_eq!(100i8.wrapping_div(10), 10);
assert_eq!((-128i8).wrapping_div(-1), -128);
Run

pub const fn wrapping_div_euclid(self, rhs: i8) -> i8

Wrapping Euclidean division. Computes self.div_euclid(rhs), wrapping around at the boundary of the type.

Wrapping will only occur in MIN / -1 on a signed type (where MIN is the negative minimal value for the type). This is equivalent to -MIN, a positive value that is too large to represent in the type. In this case, this method returns MIN itself.

Panics

This function will panic if rhs is 0.

Examples

Basic usage:

assert_eq!(100i8.wrapping_div_euclid(10), 10);
assert_eq!((-128i8).wrapping_div_euclid(-1), -128);
Run

pub const fn wrapping_rem(self, rhs: i8) -> i8

Wrapping (modular) remainder. Computes self % rhs, wrapping around at the boundary of the type.

Such wrap-around never actually occurs mathematically; implementation artifacts make x % y invalid for MIN / -1 on a signed type (where MIN is the negative minimal value). In such a case, this function returns 0.

Panics

This function will panic if rhs is 0.

Examples

Basic usage:

assert_eq!(100i8.wrapping_rem(10), 0);
assert_eq!((-128i8).wrapping_rem(-1), 0);
Run

pub const fn wrapping_rem_euclid(self, rhs: i8) -> i8

Wrapping Euclidean remainder. Computes self.rem_euclid(rhs), wrapping around at the boundary of the type.

Wrapping will only occur in MIN % -1 on a signed type (where MIN is the negative minimal value for the type). In this case, this method returns 0.

Panics

This function will panic if rhs is 0.

Examples

Basic usage:

assert_eq!(100i8.wrapping_rem_euclid(10), 0);
assert_eq!((-128i8).wrapping_rem_euclid(-1), 0);
Run

pub const fn wrapping_neg(self) -> i8

Wrapping (modular) negation. Computes -self, wrapping around at the boundary of the type.

The only case where such wrapping can occur is when one negates MIN on a signed type (where MIN is the negative minimal value for the type); this is a positive value that is too large to represent in the type. In such a case, this function returns MIN itself.

Examples

Basic usage:

assert_eq!(100i8.wrapping_neg(), -100);
assert_eq!(i8::MIN.wrapping_neg(), i8::MIN);
Run

pub const fn wrapping_shl(self, rhs: u32) -> i8

Panic-free bitwise shift-left; yields self << mask(rhs), where mask removes any high-order bits of rhs that would cause the shift to exceed the bitwidth of the type.

Note that this is not the same as a rotate-left; the RHS of a wrapping shift-left is restricted to the range of the type, rather than the bits shifted out of the LHS being returned to the other end. The primitive integer types all implement a rotate_left function, which may be what you want instead.

Examples

Basic usage:

assert_eq!((-1i8).wrapping_shl(7), -128);
assert_eq!((-1i8).wrapping_shl(128), -1);
Run

pub const fn wrapping_shr(self, rhs: u32) -> i8

Panic-free bitwise shift-right; yields self >> mask(rhs), where mask removes any high-order bits of rhs that would cause the shift to exceed the bitwidth of the type.

Note that this is not the same as a rotate-right; the RHS of a wrapping shift-right is restricted to the range of the type, rather than the bits shifted out of the LHS being returned to the other end. The primitive integer types all implement a rotate_right function, which may be what you want instead.

Examples

Basic usage:

assert_eq!((-128i8).wrapping_shr(7), -1);
assert_eq!((-128i16).wrapping_shr(64), -128);
Run

pub const fn wrapping_abs(self) -> i8

Wrapping (modular) absolute value. Computes self.abs(), wrapping around at the boundary of the type.

The only case where such wrapping can occur is when one takes the absolute value of the negative minimal value for the type; this is a positive value that is too large to represent in the type. In such a case, this function returns MIN itself.

Examples

Basic usage:

assert_eq!(100i8.wrapping_abs(), 100);
assert_eq!((-100i8).wrapping_abs(), 100);
assert_eq!(i8::MIN.wrapping_abs(), i8::MIN);
assert_eq!((-128i8).wrapping_abs() as u8, 128);
Run

pub const fn unsigned_abs(self) -> u8

Computes the absolute value of self without any wrapping or panicking.

Examples

Basic usage:

assert_eq!(100i8.unsigned_abs(), 100u8);
assert_eq!((-100i8).unsigned_abs(), 100u8);
assert_eq!((-128i8).unsigned_abs(), 128u8);
Run

pub const fn wrapping_pow(self, exp: u32) -> i8

Wrapping (modular) exponentiation. Computes self.pow(exp), wrapping around at the boundary of the type.

Examples

Basic usage:

assert_eq!(3i8.wrapping_pow(4), 81);
assert_eq!(3i8.wrapping_pow(5), -13);
assert_eq!(3i8.wrapping_pow(6), -39);
Run

pub const fn overflowing_add(self, rhs: i8) -> (i8, bool)

Calculates self + rhs

Returns a tuple of the addition along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.

Examples

Basic usage:


assert_eq!(5i8.overflowing_add(2), (7, false));
assert_eq!(i8::MAX.overflowing_add(1), (i8::MIN, true));
Run
🔬 This is a nightly-only experimental API. (mixed_integer_ops #87840)

Calculates self + rhs with an unsigned rhs

Returns a tuple of the addition along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.

Examples

Basic usage:

assert_eq!(1i8.overflowing_add_unsigned(2), (3, false));
assert_eq!((i8::MIN).overflowing_add_unsigned(u8::MAX), (i8::MAX, false));
assert_eq!((i8::MAX - 2).overflowing_add_unsigned(3), (i8::MIN, true));
Run

pub const fn overflowing_sub(self, rhs: i8) -> (i8, bool)

Calculates self - rhs

Returns a tuple of the subtraction along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.

Examples

Basic usage:


assert_eq!(5i8.overflowing_sub(2), (3, false));
assert_eq!(i8::MIN.overflowing_sub(1), (i8::MAX, true));
Run
🔬 This is a nightly-only experimental API. (mixed_integer_ops #87840)

Calculates self - rhs with an unsigned rhs

Returns a tuple of the subtraction along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.

Examples

Basic usage:

assert_eq!(1i8.overflowing_sub_unsigned(2), (-1, false));
assert_eq!((i8::MAX).overflowing_sub_unsigned(u8::MAX), (i8::MIN, false));
assert_eq!((i8::MIN + 2).overflowing_sub_unsigned(3), (i8::MAX, true));
Run

pub const fn overflowing_mul(self, rhs: i8) -> (i8, bool)

Calculates the multiplication of self and rhs.

Returns a tuple of the multiplication along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.

Examples

Basic usage:

assert_eq!(5i8.overflowing_mul(2), (10, false));
assert_eq!(1_000_000_000i32.overflowing_mul(10), (1410065408, true));
Run

pub const fn overflowing_div(self, rhs: i8) -> (i8, bool)

Calculates the divisor when self is divided by rhs.

Returns a tuple of the divisor along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would occur then self is returned.

Panics

This function will panic if rhs is 0.

Examples

Basic usage:


assert_eq!(5i8.overflowing_div(2), (2, false));
assert_eq!(i8::MIN.overflowing_div(-1), (i8::MIN, true));
Run

pub const fn overflowing_div_euclid(self, rhs: i8) -> (i8, bool)

Calculates the quotient of Euclidean division self.div_euclid(rhs).

Returns a tuple of the divisor along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would occur then self is returned.

Panics

This function will panic if rhs is 0.

Examples

Basic usage:

assert_eq!(5i8.overflowing_div_euclid(2), (2, false));
assert_eq!(i8::MIN.overflowing_div_euclid(-1), (i8::MIN, true));
Run

pub const fn overflowing_rem(self, rhs: i8) -> (i8, bool)

Calculates the remainder when self is divided by rhs.

Returns a tuple of the remainder after dividing along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would occur then 0 is returned.

Panics

This function will panic if rhs is 0.

Examples

Basic usage:


assert_eq!(5i8.overflowing_rem(2), (1, false));
assert_eq!(i8::MIN.overflowing_rem(-1), (0, true));
Run

pub const fn overflowing_rem_euclid(self, rhs: i8) -> (i8, bool)

Overflowing Euclidean remainder. Calculates self.rem_euclid(rhs).

Returns a tuple of the remainder after dividing along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would occur then 0 is returned.

Panics

This function will panic if rhs is 0.

Examples

Basic usage:

assert_eq!(5i8.overflowing_rem_euclid(2), (1, false));
assert_eq!(i8::MIN.overflowing_rem_euclid(-1), (0, true));
Run

pub const fn overflowing_neg(self) -> (i8, bool)

Negates self, overflowing if this is equal to the minimum value.

Returns a tuple of the negated version of self along with a boolean indicating whether an overflow happened. If self is the minimum value (e.g., i32::MIN for values of type i32), then the minimum value will be returned again and true will be returned for an overflow happening.

Examples

Basic usage:

assert_eq!(2i8.overflowing_neg(), (-2, false));
assert_eq!(i8::MIN.overflowing_neg(), (i8::MIN, true));
Run

pub const fn overflowing_shl(self, rhs: u32) -> (i8, bool)

Shifts self left by rhs bits.

Returns a tuple of the shifted version of self along with a boolean indicating whether the shift value was larger than or equal to the number of bits. If the shift value is too large, then value is masked (N-1) where N is the number of bits, and this value is then used to perform the shift.

Examples

Basic usage:

assert_eq!(0x1i8.overflowing_shl(4), (0x10, false));
assert_eq!(0x1i32.overflowing_shl(36), (0x10, true));
Run

pub const fn overflowing_shr(self, rhs: u32) -> (i8, bool)

Shifts self right by rhs bits.

Returns a tuple of the shifted version of self along with a boolean indicating whether the shift value was larger than or equal to the number of bits. If the shift value is too large, then value is masked (N-1) where N is the number of bits, and this value is then used to perform the shift.

Examples

Basic usage:

assert_eq!(0x10i8.overflowing_shr(4), (0x1, false));
assert_eq!(0x10i32.overflowing_shr(36), (0x1, true));
Run

pub const fn overflowing_abs(self) -> (i8, bool)

Computes the absolute value of self.

Returns a tuple of the absolute version of self along with a boolean indicating whether an overflow happened. If self is the minimum value (e.g., i8::MIN for values of type i8), then the minimum value will be returned again and true will be returned for an overflow happening.

Examples

Basic usage:

assert_eq!(10i8.overflowing_abs(), (10, false));
assert_eq!((-10i8).overflowing_abs(), (10, false));
assert_eq!((i8::MIN).overflowing_abs(), (i8::MIN, true));
Run

pub const fn overflowing_pow(self, exp: u32) -> (i8, bool)

Raises self to the power of exp, using exponentiation by squaring.

Returns a tuple of the exponentiation along with a bool indicating whether an overflow happened.

Examples

Basic usage:

assert_eq!(3i8.overflowing_pow(4), (81, false));
assert_eq!(3i8.overflowing_pow(5), (-13, true));
Run

pub const fn pow(self, exp: u32) -> i8

Raises self to the power of exp, using exponentiation by squaring.

Examples

Basic usage:

let x: i8 = 2; // or any other integer type

assert_eq!(x.pow(5), 32);
Run

pub const fn div_euclid(self, rhs: i8) -> i8

Calculates the quotient of Euclidean division of self by rhs.

This computes the integer q such that self = q * rhs + r, with r = self.rem_euclid(rhs) and 0 <= r < abs(rhs).

In other words, the result is self / rhs rounded to the integer q such that self >= q * rhs. If self > 0, this is equal to round towards zero (the default in Rust); if self < 0, this is equal to round towards +/- infinity.

Panics

This function will panic if rhs is 0 or the division results in overflow.

Examples

Basic usage:

let a: i8 = 7; // or any other integer type
let b = 4;

assert_eq!(a.div_euclid(b), 1); // 7 >= 4 * 1
assert_eq!(a.div_euclid(-b), -1); // 7 >= -4 * -1
assert_eq!((-a).div_euclid(b), -2); // -7 >= 4 * -2
assert_eq!((-a).div_euclid(-b), 2); // -7 >= -4 * 2
Run

pub const fn rem_euclid(self, rhs: i8) -> i8

Calculates the least nonnegative remainder of self (mod rhs).

This is done as if by the Euclidean division algorithm – given r = self.rem_euclid(rhs), self = rhs * self.div_euclid(rhs) + r, and 0 <= r < abs(rhs).

Panics

This function will panic if rhs is 0 or the division results in overflow.

Examples

Basic usage:

let a: i8 = 7; // or any other integer type
let b = 4;

assert_eq!(a.rem_euclid(b), 3);
assert_eq!((-a).rem_euclid(b), 1);
assert_eq!(a.rem_euclid(-b), 3);
assert_eq!((-a).rem_euclid(-b), 1);
Run
🔬 This is a nightly-only experimental API. (int_roundings #88581)

Calculates the quotient of self and rhs, rounding the result towards negative infinity.

Panics

This function will panic if rhs is 0 or the division results in overflow.

Examples

Basic usage:

#![feature(int_roundings)]
let a: i8 = 8;
let b = 3;

assert_eq!(a.unstable_div_floor(b), 2);
assert_eq!(a.unstable_div_floor(-b), -3);
assert_eq!((-a).unstable_div_floor(b), -3);
assert_eq!((-a).unstable_div_floor(-b), 2);
Run
🔬 This is a nightly-only experimental API. (int_roundings #88581)

Calculates the quotient of self and rhs, rounding the result towards positive infinity.

Panics

This function will panic if rhs is 0 or the division results in overflow.

Examples

Basic usage:

#![feature(int_roundings)]
let a: i8 = 8;
let b = 3;

assert_eq!(a.unstable_div_ceil(b), 3);
assert_eq!(a.unstable_div_ceil(-b), -2);
assert_eq!((-a).unstable_div_ceil(b), -2);
assert_eq!((-a).unstable_div_ceil(-b), 3);
Run
🔬 This is a nightly-only experimental API. (int_roundings #88581)

If rhs is positive, calculates the smallest value greater than or equal to self that is a multiple of rhs. If rhs is negative, calculates the largest value less than or equal to self that is a multiple of rhs.

Panics

This function will panic if rhs is 0 or the operation results in overflow.

Examples

Basic usage:

#![feature(int_roundings)]
assert_eq!(16_i8.unstable_next_multiple_of(8), 16);
assert_eq!(23_i8.unstable_next_multiple_of(8), 24);
assert_eq!(16_i8.unstable_next_multiple_of(-8), 16);
assert_eq!(23_i8.unstable_next_multiple_of(-8), 16);
assert_eq!((-16_i8).unstable_next_multiple_of(8), -16);
assert_eq!((-23_i8).unstable_next_multiple_of(8), -16);
assert_eq!((-16_i8).unstable_next_multiple_of(-8), -16);
assert_eq!((-23_i8).unstable_next_multiple_of(-8), -24);
Run
🔬 This is a nightly-only experimental API. (int_roundings #88581)

If rhs is positive, calculates the smallest value greater than or equal to self that is a multiple of rhs. If rhs is negative, calculates the largest value less than or equal to self that is a multiple of rhs. Returns None if rhs is zero or the operation would result in overflow.

Examples

Basic usage:

#![feature(int_roundings)]
assert_eq!(16_i8.checked_next_multiple_of(8), Some(16));
assert_eq!(23_i8.checked_next_multiple_of(8), Some(24));
assert_eq!(16_i8.checked_next_multiple_of(-8), Some(16));
assert_eq!(23_i8.checked_next_multiple_of(-8), Some(16));
assert_eq!((-16_i8).checked_next_multiple_of(8), Some(-16));
assert_eq!((-23_i8).checked_next_multiple_of(8), Some(-16));
assert_eq!((-16_i8).checked_next_multiple_of(-8), Some(-16));
assert_eq!((-23_i8).checked_next_multiple_of(-8), Some(-24));
assert_eq!(1_i8.checked_next_multiple_of(0), None);
assert_eq!(i8::MAX.checked_next_multiple_of(2), None);
Run

pub const fn log(self, base: i8) -> u32

🔬 This is a nightly-only experimental API. (int_log #70887)

Returns the logarithm of the number with respect to an arbitrary base, rounded down.

This method might not be optimized owing to implementation details; log2 can produce results more efficiently for base 2, and log10 can produce results more efficiently for base 10.

Panics

When the number is zero, or if the base is not at least 2; it panics in debug mode and the return value is 0 in release mode.

Examples
#![feature(int_log)]
assert_eq!(5i8.log(5), 1);
Run

pub const fn log2(self) -> u32

🔬 This is a nightly-only experimental API. (int_log #70887)

Returns the base 2 logarithm of the number, rounded down.

Panics

When the number is zero it panics in debug mode and the return value is 0 in release mode.

Examples
#![feature(int_log)]
assert_eq!(2i8.log2(), 1);
Run

pub const fn log10(self) -> u32

🔬 This is a nightly-only experimental API. (int_log #70887)

Returns the base 10 logarithm of the number, rounded down.

Panics

When the number is zero it panics in debug mode and the return value is 0 in release mode.

Example
#![feature(int_log)]
assert_eq!(10i8.log10(), 1);
Run
🔬 This is a nightly-only experimental API. (int_log #70887)

Returns the logarithm of the number with respect to an arbitrary base, rounded down.

Returns None if the number is negative or zero, or if the base is not at least 2.

This method might not be optimized owing to implementation details; checked_log2 can produce results more efficiently for base 2, and checked_log10 can produce results more efficiently for base 10.

Examples
#![feature(int_log)]
assert_eq!(5i8.checked_log(5), Some(1));
Run
🔬 This is a nightly-only experimental API. (int_log #70887)

Returns the base 2 logarithm of the number, rounded down.

Returns None if the number is negative or zero.

Examples
#![feature(int_log)]
assert_eq!(2i8.checked_log2(), Some(1));
Run
🔬 This is a nightly-only experimental API. (int_log #70887)

Returns the base 10 logarithm of the number, rounded down.

Returns None if the number is negative or zero.

Example
#![feature(int_log)]
assert_eq!(10i8.checked_log10(), Some(1));
Run

pub const fn abs(self) -> i8

Computes the absolute value of self.

Overflow behavior

The absolute value of i8::MIN cannot be represented as an i8, and attempting to calculate it will cause an overflow. This means that code in debug mode will trigger a panic on this case and optimized code will return i8::MIN without a panic.

Examples

Basic usage:

assert_eq!(10i8.abs(), 10);
assert_eq!((-10i8).abs(), 10);
Run

pub const fn abs_diff(self, other: i8) -> u8

🔬 This is a nightly-only experimental API. (int_abs_diff #89492)

Computes the absolute difference between self and other.

This function always returns the correct answer without overflow or panics by returning an unsigned integer.

Examples

Basic usage:

#![feature(int_abs_diff)]
assert_eq!(100i8.abs_diff(80), 20u8);
assert_eq!(100i8.abs_diff(110), 10u8);
assert_eq!((-100i8).abs_diff(80), 180u8);
assert_eq!((-100i8).abs_diff(-120), 20u8);
assert_eq!(i8::MIN.abs_diff(i8::MAX), u8::MAX);
Run

pub const fn signum(self) -> i8

Returns a number representing sign of self.

  • 0 if the number is zero
  • 1 if the number is positive
  • -1 if the number is negative
Examples

Basic usage:

assert_eq!(10i8.signum(), 1);
assert_eq!(0i8.signum(), 0);
assert_eq!((-10i8).signum(), -1);
Run

pub const fn is_positive(self) -> bool

Returns true if self is positive and false if the number is zero or negative.

Examples

Basic usage:

assert!(10i8.is_positive());
assert!(!(-10i8).is_positive());
Run

pub const fn is_negative(self) -> bool

Returns true if self is negative and false if the number is zero or positive.

Examples

Basic usage:

assert!((-10i8).is_negative());
assert!(!10i8.is_negative());
Run

pub const fn to_be_bytes(self) -> [u8; 1]

Return the memory representation of this integer as a byte array in big-endian (network) byte order.

Examples
let bytes = 0x12i8.to_be_bytes();
assert_eq!(bytes, [0x12]);
Run

pub const fn to_le_bytes(self) -> [u8; 1]

Return the memory representation of this integer as a byte array in little-endian byte order.

Examples
let bytes = 0x12i8.to_le_bytes();
assert_eq!(bytes, [0x12]);
Run

pub const fn to_ne_bytes(self) -> [u8; 1]

Return the memory representation of this integer as a byte array in native byte order.

As the target platform’s native endianness is used, portable code should use to_be_bytes or to_le_bytes, as appropriate, instead.

Examples
let bytes = 0x12i8.to_ne_bytes();
assert_eq!(
    bytes,
    if cfg!(target_endian = "big") {
        [0x12]
    } else {
        [0x12]
    }
);
Run

pub const fn from_be_bytes(bytes: [u8; 1]) -> i8

Create an integer value from its representation as a byte array in big endian.

Examples
let value = i8::from_be_bytes([0x12]);
assert_eq!(value, 0x12);
Run

When starting from a slice rather than an array, fallible conversion APIs can be used:

use std::convert::TryInto;

fn read_be_i8(input: &mut &[u8]) -> i8 {
    let (int_bytes, rest) = input.split_at(std::mem::size_of::<i8>());
    *input = rest;
    i8::from_be_bytes(int_bytes.try_into().unwrap())
}
Run

pub const fn from_le_bytes(bytes: [u8; 1]) -> i8

Create an integer value from its representation as a byte array in little endian.

Examples
let value = i8::from_le_bytes([0x12]);
assert_eq!(value, 0x12);
Run

When starting from a slice rather than an array, fallible conversion APIs can be used:

use std::convert::TryInto;

fn read_le_i8(input: &mut &[u8]) -> i8 {
    let (int_bytes, rest) = input.split_at(std::mem::size_of::<i8>());
    *input = rest;
    i8::from_le_bytes(int_bytes.try_into().unwrap())
}
Run

pub const fn from_ne_bytes(bytes: [u8; 1]) -> i8

Create an integer value from its memory representation as a byte array in native endianness.

As the target platform’s native endianness is used, portable code likely wants to use from_be_bytes or from_le_bytes, as appropriate instead.

Examples
let value = i8::from_ne_bytes(if cfg!(target_endian = "big") {
    [0x12]
} else {
    [0x12]
});
assert_eq!(value, 0x12);
Run

When starting from a slice rather than an array, fallible conversion APIs can be used:

use std::convert::TryInto;

fn read_ne_i8(input: &mut &[u8]) -> i8 {
    let (int_bytes, rest) = input.split_at(std::mem::size_of::<i8>());
    *input = rest;
    i8::from_ne_bytes(int_bytes.try_into().unwrap())
}
Run

pub const fn min_value() -> i8

👎 Deprecating in a future Rust version:

replaced by the MIN associated constant on this type

New code should prefer to use i8::MIN instead.

Returns the smallest value that can be represented by this integer type.

pub const fn max_value() -> i8

👎 Deprecating in a future Rust version:

replaced by the MAX associated constant on this type

New code should prefer to use i8::MAX instead.

Returns the largest value that can be represented by this integer type.


About Joyk


Aggregate valuable and interesting links.
Joyk means Joy of geeK