4

开闭原则(OCP)的理解与灵活应用

 2 years ago
source link: https://segmentfault.com/a/1190000041081198
Go to the source link to view the article. You can view the picture content, updated content and better typesetting reading experience. If the link is broken, please click the button below to view the snapshot at that time.
neoserver,ios ssh client

开闭原则(OCP)的理解与灵活应用

发布于 12 月 7 日

开闭原则可能是 SOLID 中最难理解最难掌握,同时也是最有用的一条原则。

  • 之所以说这条原则难理解,那是因为,“怎样的代码改动才被定义为‘扩展’?怎样的代码改动才被定义为‘修改’?怎么才算满足或违反‘开闭原则’?修改代码就一定意味着违反‘开闭原则’吗?”等等这些问题,都比较难理解。
  • 之所以说这条原则难掌握,那是因为,“如何做到‘对扩展开放、修改关闭’?如何在项目中灵活地应用‘开闭原则’,以避免在追求扩展性的同时影响到代码的可读性?”等等这些问题,都比较难掌握。
  • 之所以说这条原则最有用,那是因为,扩展性是代码质量最重要的衡量标准之一。在 23 种经典设计模式中,大部分设计模式都是为了解决代码的扩展性问题而存在的,主要遵从的设计原则就是开闭原则

开闭原则的英文全称是 Open Closed Principle(OCP)。它的英文描述是:software entities (modules, classes, functions, etc.) should be open for extension , but closed for modification。

用中文详细表述下就是:添加一个新的功能应该是,在已有代码基础上扩展代码(新增模块、类、方法等),而非修改已有代码(修改模块、类、方法等)

如何理解“对扩展开放、对修改关闭”?

我们通过下面的例子来更好的理解“对扩展开放、对修改关闭”的含义。

这是一段 API 接口监控告警的代码。其中,

  • AlertRule 存储告警规则,可以自由设置。
  • Notification 是告警通知类,支持邮件、短信、微信、手机等多种通知渠道。
  • NotificationEmergencyLevel 表示通知的紧急程度,包括 SEVERE(严重)、URGENCY(紧急)、NORMAL(普通)、TRIVIAL(无关紧要),不同的紧急程度对应不同的发送渠道。
public class Alert {
  private AlertRule rule;
  private Notification notification;

  public Alert(AlertRule rule, Notification notification) {
    this.rule = rule;
    this.notification = notification;
  }

  public void check(String api, long requestCount, long errorCount, long durationOfSeconds) {
    long tps = requestCount / durationOfSeconds;
    if (tps > rule.getMatchedRule(api).getMaxTps()) {
      notification.notify(NotificationEmergencyLevel.URGENCY, "...");
    }
    if (errorCount > rule.getMatchedRule(api).getMaxErrorCount()) {
      notification.notify(NotificationEmergencyLevel.SEVERE, "...");
    }
  }
}

上面这段代码非常简单,业务逻辑主要集中在 check() 函数中。当接口的 TPS 超过某个预先设置的最大值时,以及当接口请求出错数大于某个最大允许值时,就会触发告警,通知接口的相关负责人或者团队。

现在,如果我们需要添加一个功能,当每秒钟接口超时请求个数,超过某个预先设置的最大阈值时,我们也要触发告警发送通知。这个时候,我们该如何改动代码呢?主要的改动有两处:

  1. 第一处是修改 check() 函数的入参,添加一个新的统计数据 timeoutCount,表示超时接口请求数;
  2. 第二处是在 check() 函数中添加新的告警逻辑。

具体的代码改动如下所示:

public class Alert {
  // ...省略AlertRule/Notification属性和构造函数...
  
  // 改动一:添加参数timeoutCount
  public void check(String api, long requestCount, long errorCount, long timeoutCount, long durationOfSeconds) {
    long tps = requestCount / durationOfSeconds;
    if (tps > rule.getMatchedRule(api).getMaxTps()) {
      notification.notify(NotificationEmergencyLevel.URGENCY, "...");
    }
    if (errorCount > rule.getMatchedRule(api).getMaxErrorCount()) {
      notification.notify(NotificationEmergencyLevel.SEVERE, "...");
    }
    // 改动二:添加接口超时处理逻辑
    long timeoutTps = timeoutCount / durationOfSeconds;
    if (timeoutTps > rule.getMatchedRule(api).getMaxTimeoutTps()) {
      notification.notify(NotificationEmergencyLevel.URGENCY, "...");
    }
  }
}

这样的代码修改实际上存在挺多问题的:

  • 一方面,我们对check() 函数入参进行了修改,这就意味着调用这个函数的代码都要做相应的修改。
  • 另一方面,修改了 check() 函数,相应的单元测试都需要修改。

上面的代码改动是基于“修改”的方式来实现新功能的。如果我们遵循开闭原则,也就是“对扩展开放、对修改关闭”。那如何通过“扩展”的方式,来实现同样的功能呢?

我们先重构一下之前的 Alert 代码,让它的扩展性更好一些。重构的内容主要包含两部分:

  • 第一部分是将 check() 函数的多个入参封装成 ApiStatInfo 类;
  • 第二部分是引入 handler 的概念,将 if 判断逻辑分散在各个 handler 中。
public class Alert {
  private List<AlertHandler> alertHandlers = new ArrayList<>();
  
  public void addAlertHandler(AlertHandler alertHandler) {
    this.alertHandlers.add(alertHandler);
  }

  public void check(ApiStatInfo apiStatInfo) {
    for (AlertHandler handler : alertHandlers) {
      handler.check(apiStatInfo);
    }
  }
}

public class ApiStatInfo {//省略constructor/getter/setter方法
  private String api;
  private long requestCount;
  private long errorCount;
  private long durationOfSeconds;
}

public abstract class AlertHandler {
  protected AlertRule rule;
  protected Notification notification;
  public AlertHandler(AlertRule rule, Notification notification) {
    this.rule = rule;
    this.notification = notification;
  }
  public abstract void check(ApiStatInfo apiStatInfo);
}

public class TpsAlertHandler extends AlertHandler {
  public TpsAlertHandler(AlertRule rule, Notification notification) {
    super(rule, notification);
  }

  @Override
  public void check(ApiStatInfo apiStatInfo) {
    long tps = apiStatInfo.getRequestCount() / apiStatInfo.getDurationOfSeconds();
    if (tps > rule.getMatchedRule(apiStatInfo.getApi()).getMaxTps()) {
      notification.notify(NotificationEmergencyLevel.URGENCY, "...");
    }
  }
}

public class ErrorAlertHandler extends AlertHandler {
  public ErrorAlertHandler(AlertRule rule, Notification notification){
    super(rule, notification);
  }

  @Override
  public void check(ApiStatInfo apiStatInfo) {
    if (apiStatInfo.getErrorCount() > rule.getMatchedRule(apiStatInfo.getApi()).getMaxErrorCount()) {
      notification.notify(NotificationEmergencyLevel.SEVERE, "...");
    }
  }
}

上面的代码是对 Alert 的重构,我们再来看下,重构之后的 Alert 该如何使用呢?具体的使用代码我也写在这里了。其中,ApplicationContext 是一个单例类,负责 Alert 的创建、组装(alertRule 和 notification 的依赖注入)、初始化(添加 handlers)工作。

public class ApplicationContext {
  private AlertRule alertRule;
  private Notification notification;
  private Alert alert;
  
  public void initializeBeans() {
    alertRule = new AlertRule(/*.省略参数.*/); //省略一些初始化代码
    notification = new Notification(/*.省略参数.*/); //省略一些初始化代码
    alert = new Alert();
    alert.addAlertHandler(new TpsAlertHandler(alertRule, notification));
    alert.addAlertHandler(new ErrorAlertHandler(alertRule, notification));
  }
  public Alert getAlert() { return alert; }

  // 饿汉式单例
  private static final ApplicationContext instance = new ApplicationContext();
  private ApplicationContext() {
    initializeBeans();
  }
  public static ApplicationContext getInstance() {
    return instance;
  }
}

public class Demo {
  public static void main(String[] args) {
    ApiStatInfo apiStatInfo = new ApiStatInfo();
    // ...省略设置apiStatInfo数据值的代码
    ApplicationContext.getInstance().getAlert().check(apiStatInfo);
  }
}

基于重构之后的代码,如果再添加上面讲到的那个新功能,每秒钟接口超时请求个数超过某个最大阈值就告警,我们又该如何改动代码呢?主要的改动有下面四处。

  • 第一处改动是:在 ApiStatInfo 类中添加新的属性 timeoutCount。
  • 第二处改动是:添加新的 TimeoutAlertHander 类。
  • 第三处改动是:在 ApplicationContext 类的 initializeBeans() 方法中,往 alert 对象中注册新的 timeoutAlertHandler。
  • 第四处改动是:在使用 Alert 类的时候,需要给 check() 函数的入参 apiStatInfo 对象设置 timeoutCount 的值。
public class Alert { // 代码未改动... }
public class ApiStatInfo {//省略constructor/getter/setter方法
  private String api;
  private long requestCount;
  private long errorCount;
  private long durationOfSeconds;
  private long timeoutCount; // 改动一:添加新字段
}
public abstract class AlertHandler { //代码未改动... }
public class TpsAlertHandler extends AlertHandler {//代码未改动...}
public class ErrorAlertHandler extends AlertHandler {//代码未改动...}
// 改动二:添加新的handler
public class TimeoutAlertHandler extends AlertHandler {//省略代码...}

public class ApplicationContext {
  private AlertRule alertRule;
  private Notification notification;
  private Alert alert;
  
  public void initializeBeans() {
    alertRule = new AlertRule(/*.省略参数.*/); //省略一些初始化代码
    notification = new Notification(/*.省略参数.*/); //省略一些初始化代码
    alert = new Alert();
    alert.addAlertHandler(new TpsAlertHandler(alertRule, notification));
    alert.addAlertHandler(new ErrorAlertHandler(alertRule, notification));
    // 改动三:注册handler
    alert.addAlertHandler(new TimeoutAlertHandler(alertRule, notification));
  }
  //...省略其他未改动代码...
}

public class Demo {
  public static void main(String[] args) {
    ApiStatInfo apiStatInfo = new ApiStatInfo();
    // ...省略apiStatInfo的set字段代码
    apiStatInfo.setTimeoutCount(289); // 改动四:设置tiemoutCount值
    ApplicationContext.getInstance().getAlert().check(apiStatInfo);
}

重构之后的代码更加灵活和易扩展。如果我们要想添加新的告警逻辑,只需要基于扩展的方式创建新的 handler 类即可,不需要改动原来的 check() 函数的逻辑。而且,我们只需要为新的 handler 类添加单元测试,老的单元测试都不会失败,也不用修改。

修改代码就意味着违背开闭原则吗?

看了上面重构之后的代码,你可能还会有疑问:在添加新的告警逻辑的时候,尽管改动二(添加新的 handler 类)是基于扩展而非修改的方式来完成的,但改动一、三、四貌似不是基于扩展而是基于修改的方式来完成的,那改动一、三、四不就违背了开闭原则吗?

分析改动一:往 ApiStatInfo 类中添加新的属性 timeoutCount。

实际上,我们不仅往 ApiStatInfo 类中添加了属性,还添加了对应的 getter/setter 方法。那这个问题就转化为:给类中添加新的属性和方法,算作“修改”还是“扩展”?

我们再一块回忆一下开闭原则的定义:软件实体(模块、类、方法等)应该“对扩展开放、对修改关闭”。从定义中,我们可以看出,开闭原则可以应用在不同粒度的代码中,可以是模块,也可以类,还可以是方法(及其属性)。同样一个代码改动,在粗代码粒度下,被认定为“修改”,在细代码粒度下,又可以被认定为“扩展”。比如,改动一,添加属性和方法相当于修改类,在类这个层面,这个代码改动可以被认定为“修改”;但这个代码改动并没有修改已有的属性和方法,在方法(及其属性)这一层面,它又可以被认定为“扩展”。

实际上,我们也没必要纠结某个代码改动是“修改”还是“扩展”,更没必要太纠结它是否违反“开闭原则”。我们回到这条原则的设计初衷:只要它没有破坏原有的代码的正常运行,没有破坏原有的单元测试,我们就可以说,这是一个合格的代码改动。

分析改动三和改动四

这两处改动都是在方法内部进行的,不管从哪个层面(模块、类、方法)来讲,都不能算是“扩展”,而是地地道道的“修改”。不过,有些修改是在所难免的,是可以被接受的。为什么这么说呢?我来解释一下。

在重构之后的 Alert 代码中,我们的核心逻辑集中在 Alert 类及其各个 handler 中,当我们在添加新的告警逻辑的时候,Alert 类完全不需要修改,而只需要扩展一个新 handler 类。如果我们把 Alert 类及各个 handler 类合起来看作一个“模块”,那模块本身在添加新的功能的时候,完全满足开闭原则

而且,我们要认识到,添加一个新功能,不可能任何模块、类、方法的代码都不“修改”,这个是做不到的。类需要创建、组装、并且做一些初始化操作,才能构建成可运行的的程序,这部分代码的修改是在所难免的。我们要做的是尽量让修改操作更集中、更少、更上层,尽量让最核心、最复杂的那部分逻辑代码满足开闭原则

如何做到“对扩展开放、修改关闭”?

在刚刚的例子中,我们通过引入一组 handler 的方式来实现支持开闭原则。如果你没有太多复杂代码的设计和开发经验,你可能会有这样的疑问:这样的代码设计思路我怎么想不到呢?你是怎么想到的呢?

这主要依靠的是理论知识和实战经验,这些需要慢慢学习和积累。但是对于如何做到“对扩展开放、修改关闭”,也有一些指导思想和具体的方法论可以参考。

  • 要时刻具备扩展意识、抽象意识、封装意识。这些“潜意识”可能比任何开发技巧都重要
  • 在写代码的时候后,我们要多花点时间往前多思考一下,这段代码未来可能有哪些需求变更、如何设计代码结构,事先留好扩展点.
  • 在识别出代码可变部分和不可变部分之后,我们要将可变部分封装起来,隔离变化,提供抽象化的不可变接口,给上层系统使用。当具体的实现发生变化的时候,我们只需要基于相同的抽象接口,扩展一个新的实现,替换掉老的实现即可,上游系统的代码几乎不需要修改。

具体方法论

在众多的设计原则、思想、模式中,最常用来提高代码扩展性的方法有:

  • 基于接口而非实现编程
  • 以及大部分的设计模式(比如,装饰、策略、模板、职责链、状态等)

实际上,多态、依赖注入、基于接口而非实现编程,以及前面提到的抽象意识,说的都是同一种设计思路,只是从不同的角度、不同的层面来阐述而已。这也体现了“很多设计原则、思想、模式都是相通的”这一思想。

通过一个例子来解释一下,如何利用这几个设计思想或原则来实现“对扩展开放、对修改关闭”。

比如,我们代码中通过 Kafka 来发送异步消息。对于这样一个功能的开发,我们要学会将其抽象成一组跟具体消息队列(Kafka)无关的异步消息接口。所有上层系统都依赖这组抽象的接口编程,并且通过依赖注入的方式来调用。当我们要替换新的消息队列的时候,比如将 Kafka 替换成 RocketMQ,可以很方便地拔掉老的消息队列实现,插入新的消息队列实现。具体代码如下所示:

// 这一部分体现了抽象意识
public interface MessageQueue { //... }
public class KafkaMessageQueue implements MessageQueue { //... }
public class RocketMQMessageQueue implements MessageQueue {//...}

public interface MessageFormatter { //... }
public class JsonMessageFormatter  implements MessageFormatter  {//...}
public class ProtoBufMessageFormatter  implements MessageFormatter {//...}

public class Demo {
  private MessageQueue msgQueue; // 基于接口而非实现编程
  public Demo(MessageQueue msgQueue) { // 依赖注入
    this.msgQueue = msgQueue;
  }
  
  // msgFormatter:多态、依赖注入
  public void sendNotification(Notification notification, MessageFormatter msgFormatter) {
    //...    
  }
}

如何在项目中灵活应用开闭原则?

前面我们提到,写出支持“对扩展开放、对修改关闭”的代码的关键是预留扩展点。那问题是如何才能识别出所有可能的扩展点呢?

  • 如果你开发的是一个业务导向的系统,比如金融系统、电商系统、物流系统等,要想识别出尽可能多的扩展点,就要对业务有足够的了解,能够知道当下以及未来可能要支持的业务需求。
  • 如果你开发的是跟业务无关的、通用的、偏底层的系统,比如,框架、组件、类库,你需要了解“它们会被如何使用?今后你打算添加哪些功能?使用者未来会有哪些更多的功能需求?”等问题。

不过,有一句话说得好,“唯一不变的只有变化本身”。即便我们对业务、对系统有足够的了解,那也不可能识别出所有的扩展点,即便你能识别出所有的扩展点,为这些地方都预留扩展点,这样做的成本也是不可接受的。我们没必要为一些遥远的、不一定发生的需求去提前买单,做过度设计。

最合理的做法是:

  • 对于一些比较确定的、短期内可能就会扩展,或者需求改动对代码结构影响比较大的情况,或者实现成本不高的扩展点,在编写代码的时候之后,我们就可以事先做些扩展性设计。
  • 但对于一些不确定未来是否要支持的需求,或者实现起来比较复杂的扩展点,我们可以等到有需求驱动的时候,再通过重构代码的方式来支持扩展的需求。

而且,开闭原则也并不是免费的。有些情况下,代码的扩展性会跟可读性相冲突。比如,我们之前举的 Alert 告警的例子。为了更好地支持扩展性,我们对代码进行了重构,重构之后的代码要比之前的代码复杂很多,理解起来也更加有难度。很多时候,我们都需要在扩展性和可读性之间做权衡。在某些场景下,代码的扩展性很重要,我们就可以适当地牺牲一些代码的可读性;在另一些场景下,代码的可读性更加重要,那我们就适当地牺牲一些代码的可扩展性。

  • 《设计模式之美》极客时间

About Joyk


Aggregate valuable and interesting links.
Joyk means Joy of geeK