6

Wolves make roadways safer, generating large economic returns to predator conser...

 2 years ago
source link: https://www.pnas.org/content/118/22/e2023251118
Go to the source link to view the article. You can view the picture content, updated content and better typesetting reading experience. If the link is broken, please click the button below to view the snapshot at that time.
neoserver,ios ssh client
Wolves make roadways safer, generating large economic returns to predator conservation
Research Article

Wolves make roadways safer, generating large economic returns to predator conservation

View ORCID ProfileJennifer L. Raynor, View ORCID ProfileCorbett A. Grainger, and Dominic P. Parker

See all authors and affiliations

PNAS June 1, 2021 118 (22) e2023251118; https://doi.org/10.1073/pnas.2023251118
  1. Edited by Stephen R. Carpenter, University of Wisconsin–Madison, Madison, WI, and approved March 31, 2021 (received for review November 11, 2020)

Significance

Measuring the economic benefits conveyed by predators is difficult—often, effects are indirect and operate through complex ecological changes. As a result, debates about the expansion of predators have pit salient costs against more speculative estimates of benefits that might be dismissed as unreliable or ideologically motivated. We quantify the indirect benefits of wolves (Canis lupus) to human lives and property through reductions in deer-vehicle collisions. Moreover, we decompose the effect into two components: changes in prey behavior versus prey abundance. This decomposition is important when effective policy depends on whether hunters can replicate the effects of predators. In the case of wolves, we conclude that human deer hunters cannot.

Abstract

Recent studies uncover cascading ecological effects resulting from removing and reintroducing predators into a landscape, but little is known about effects on human lives and property. We quantify the effects of restoring wolf populations by evaluating their influence on deer–vehicle collisions (DVCs) in Wisconsin. We show that, for the average county, wolf entry reduced DVCs by 24%, yielding an economic benefit that is 63 times greater than the costs of verified wolf predation on livestock. Most of the reduction is due to a behavioral response of deer to wolves rather than through a deer population decline from wolf predation. This finding supports ecological research emphasizing the role of predators in creating a “landscape of fear.” It suggests wolves control economic damages from overabundant deer in ways that human deer hunters cannot.

Footnotes

  • Author contributions: J.L.R., C.A.G., and D.P.P. designed research; J.L.R., C.A.G., and D.P.P. performed research; J.L.R. and D.P.P. analyzed data; J.L.R., C.A.G., and D.P.P. wrote the paper; J.L.R. conceptualized the study and collected and curated the data; and D.P.P. acquired financial support for the project.

  • Competing interest statement: S.R.C., C.A.G., and D.P.P. are affiliated with University of Wisconsin–Madison. C.A.G. and D.P.P. did not request S.R.C. as an editor, and S.R.C. did not invite submission of this article.

  • This article is a PNAS Direct Submission.

  • This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2023251118/-/DCSupplemental.

Data Availability

The datasets generated during and/or analyzed during the current study are available in Dryad at https://doi.org/10.5061/dryad.g4f4qrfp8. This paper does not use any custom algorithms.

Published under the PNAS license.

References

    1. J. A. Estes et al
    ., Trophic downgrading of planet Earth. Science 333, 301–306 (2011).
    1. W. J. Ripple et al
    ., Status and ecological effects of the world’s largest carnivores. Science 343, 1241484 (2014).
    1. B. E. McLaren,
    2. R. O. Peterson
    , Wolves, moose, and tree rings on Isle Royale. Science 266, 1555–1558 (1994).
    1. W. J. Ripple,
    2. E. J. Larsen,
    3. R. A. Renkin,
    4. D. W. Smith
    , Trophic cascades among wolves, elk and aspen on Yellowstone National Park’s northern range. Biol. Conserv. 102, 227–234 (2001).
    1. R. Callan,
    2. N. P. Nibbelink,
    3. T. P. Rooney,
    4. J. E. Wiedenhoeft,
    5. A. P. Wydeven
    , Recolonizing wolves trigger a trophic cascade in Wisconsin (USA). J. Ecol. 101, 837–845 (2013).
    1. J.-L. Martin,
    2. S. Chamaillé-Jammes,
    3. D. M. Waller
    , Deer, wolves, and people: Costs, benefits and challenges of living together. Biol. Rev. Camb. Philos. Soc. 95, 782–801 (2020).
    1. S. Gilbert,
    2. N. Carter,
    3. R. Naidoo
    , Predation services: Quantifying societal effects of predators and their prey. Front. Ecol. Environ., https://doi.org/10.1002/fee.2336 (2021).
    1. J. A. Estes,
    2. L. P. Carswell
    , Costs and benefits of living with predators. Science 368, 1178–1180 (2020).
    1. E. J. Gregr et al
    ., Cascading social-ecological costs and benefits triggered by a recovering keystone predator. Science 368, 1243–1247 (2020).
    1. L. Boitani
    , “Wolf Conservation and Recovery” in Wolves: Behavior, Ecology, and Conservation, L. D. Mech, L. Boitani, Eds. (University of Chicago Press, 2003), pp. 317–340.
    1. G. Chapron et al
    ., Recovery of large carnivores in Europe’s modern human-dominated landscapes. Science 346, 1517–1519 (2014).
    1. US Fish and Wildlife Service
    , Gray Wolf: Current Population in the United States. https://www.fws.gov/midwest/wolf/aboutwolves/WolfPopUS.htm. Accessed 27 July 2020.
    1. C. M. Chambers,
    2. J. C. Whitehead
    , A contingent valuation estimate of the benefits of wolves in Minnesota. Environ. Resour. Econ. 26, 249–267 (2003).
    1. C. L. Kling,
    2. D. J. Phaneuf,
    3. J. Zhao
    , From Exxon to BP: Has some number become better than no number? J. Econ. Perspect. 26, 3–26 (2012).
    1. W. S. Alverson,
    2. D. M. Waller,
    3. S. L. Solheim
    , Forests too deer: Edge effects in Northern Wisconsin. Conserv. Biol. 2, 348–358 (1988).
    1. E. S. Long,
    2. D. R. Diefenbach,
    3. C. S. Rosenberry,
    4. B. D. Wallingford,
    5. M. D. Grund
    , Forest cover influences dispersal distance of white-tailed deer. J. Mammal. 86, 623–629 (2005).
    1. A. Leopold,
    2. L. K. Sowls,
    3. D. L. Spencer
    , A survey of over-populated deer ranges in the United States. J. Wildl. Manage. 11, 162–177 (1947).
    1. S. D. Côté,
    2. T. P. Rooney,
    3. J.-P. Tremblay,
    4. C. Dussault,
    5. D. M. Waller
    , Ecological impacts of deer overabundance. Annu. Rev. Ecol. Evol. Syst. 35, 113–147 (2004).
    1. K. M. Averill et al
    ., A regional assessment of white-tailed deer effects on plant invasion. AoB Plants 10, plx047 (2017).
    1. M. R. Conover,
    2. W. C. Pitt,
    3. K. K. Kessler,
    4. T. J. DuBow,
    5. W. A. Sanborn
    , Review of human injuries, illnesses, and economic losses caused by wildlife in the United States. Wildl. Soc. Bull. 23, 407–414 (1995).
    1. M. P. Huijser et al
    ., "Wildlife-vehicle collision reduction study: Report to Congress" (Tech. Rep. FHWA-HRT-08-034, Federal Highway Administration, 2008).
    1. G. W. T. A. Groot Bruinderink,
    2. E. Hazebroek
    , Ungulate traffic collisions in Europe. Conserv. Biol. 10, 1059–1067 (1996).
    1. W. J. Ripple,
    2. R. L. Beschta
    , Large predators limit herbivore densities in northern forest ecosystems. Eur. J. Wildl. Res. 58, 733–742 (2012).
    1. F. Messier
    , The significance of limiting and regulating factors on the demography of moose and white-tailed deer. J. Anim. Ecol. 60, 377–393 (1991).
    1. A. J. DeNicola,
    2. S. C. Williams
    , Sharpshooting suburban white-tailed deer reduces deer–vehicle collisions. Hum.- Wildl. Confl. 2, 28–33 (2008).
    1. A. Hussain,
    2. J. B. Armstrong,
    3. D. B. Brown,
    4. J. Hogland
    , Land-use pattern, urbanization, and deer-vehicle collisions in Alabama. Hum.- Wildl. Confl. 1, 89–96 (2007).
    1. S. L. Gilbert, et al
    ., Socioeconomic benefits of large carnivore recolonization through reduced wildlife-vehicle collisions. Conserv. Lett. 10, 431–439 (2016).
    1. J. L. Atkins et al
    ., Cascading impacts of large-carnivore extirpation in an African ecosystem. Science 364, 173–177 (2019).
    1. J. W. Laundré,
    2. L. Hernández
    , The landscape of fear: Ecological implications of being afraid. Open Ecol. J. 3, 1–7 (2010).
    1. K. M. Gaynor,
    2. J. S. Brown,
    3. A. D. Middleton,
    4. M. E. Power,
    5. J. S. Brashares
    , Landscapes of fear: Spatial patterns of risk perception and response. Trends Ecol. Evol. 34, 355–368 (2019).
    1. J. Whittington et al
    ., Caribou encounters with wolves increase near roads and trails: A time-to-event approach. J. Appl. Ecol. 48, 1535–1542 (2011).
    1. M. Dickie,
    2. R. Serrouya,
    3. R. S. McNay,
    4. S. Boutin
    , Faster and farther: Wolf movement on linear features and implications for hunting behaviour. J. Appl. Ecol. 54, 253–263 (2017).
    1. A. R. C. James,
    2. A. K. Stuart-Smith
    , Distribution of caribou and wolves in relation to linear corridors. J. Wildl. Manage. 64, 154–159 (2000).
    1. K. Bojarska et al
    ., Opportunity and peril: How wolves use a dense network of forest roads. Mamm. Biol. 100, 203–211 (2020).
    1. E. J. Newton et al
    ., Compensatory selection for roads over natural linear features by wolves in northern Ontario: Implications for caribou conservation. PLoS One 12, e0186525 (2017).
    1. C. A. DeMars,
    2. S. Boutin
    , Nowhere to hide: Effects of linear features on predator-prey dynamics in a large mammal system. J. Anim. Ecol. 87, 274–284 (2018).
    1. J. A. Dellinger et al
    ., Habitat use of sympatric prey suggests divergent anti-predator responses to recolonizing gray wolves. Oecologia 189, 487–500 (2019).
    1. Wisconsin Department of Natural Resources
    , Wisconsin Wolf Management Plan (1999). https://p.widencdn.net/hspl5b/ER0099. Accessed 31 August 2018.
    1. L. D. Mech
    , Is science in danger of sanctifying the wolf? Biol. Conserv. 150, 143–149 (2012).
    1. J. E. Wiedenhoeft,
    2. D. M. MacFarland,
    3. N. S. Libal,
    4. J. Bruner
    , “Wisconsin Gray Wolf Monitoring Report: 15 April 2016 through 14 April 2017” (Wisconsin Department of Natural Resources, Madison, WI).
    1. T. R. Van Deelen
    , “Growth characteristics of a recovering wolf population in the Great Lakes region” in Recovery of Gray Wolves in the Great Lakes Region of the United States: An Endangered Species Success Story, A. P. Wydeven, T. R. Van Deelen, E. J. Heske, Eds. (Springer, 2009), pp. 153–166.
    1. National Archives and Records Administration
    , Endangered and threatened wildlife and plants; revising the listing of the gray wolf (Canis lupus) in the western Great Lakes. Fed. Regist. 76, 81666–81726 (2011).
    1. D. J. Mladenoff,
    2. T. A. Sickley
    , Assessing potential gray wolf restoration in the northeastern United States: A spatial prediction of favorable habitat and potential population levels. J. Wildl. Manage. 62, 1–10 (1998).
    1. Wisconsin Department of Natural Resources
    , Wisconsin annual wolf damage payment summary (2020). http://dnr.wi.gov/topic/wildlifehabitat/wolf/documents/wolfdamagepayments.pdf. Accessed 8 April 2020.
    1. Wisconsin Department of Natural Resources
    , Wisconsin Deer Metrics. Deer Veh. Collis. https://dnr.wi.gov/wideermetrics/DeerStats.aspx?R=Collision. Accessed 2 November 2020.
    1. J. D. Angrist,
    2. J.-S. Pischke
    , Mostly Harmless Econometrics: An Empiricist’s Companion (Princeton University Press, 2009).
    1. A. Olden,
    2. J. Moen
    , The Triple Difference Estimator, SSRN Electron. J. (2020) https://doi.org/10.2139/ssrn.3582447. Accessed 30 October 2020.
    1. T. L. Brown et al
    ., The future of hunting as a mechanism to control white-tailed deer populations. Wildl. Soc. Bull. 28, 797–807 (2000).
    1. T. Crocker,
    2. J. Tschirhart
    , Ecosystems, externalities, and economies. Environ. Resour. Econ. 2, 551–567 (1992).
    1. P. J. Baker,
    2. L. Boitani,
    3. S. Harris,
    4. G. Saunders,
    5. P. C. White
    , Terrestrial carnivores and human food production: Impact and management. Mammal Rev. 38, 123–166 (2008).
    1. I. Laporte,
    2. T. B. Muhly,
    3. J. A. Pitt,
    4. M. Alexander,
    5. M. Musiani
    , Effects of wolves on elk and cattle behaviors: Implications for livestock production and wolf conservation. PLoS One 5, e11954 (2010).
    1. J. R. Steele,
    2. B. S. Rashford,
    3. T. K. Foulke,
    4. J. A. Tanaka,
    5. D. T. Taylor
    , Wolf (Canis lupus) predation impacts on livestock production: Direct effects, indirect effects, and implications for compensation ratios. Rangeland Ecol. Manag. 66, 539–544 (2013).
    1. M. Widman,
    2. M. Steen,
    3. K. Elofsson
    , Indirect costs of sheep depredation by large carnivores in Sweden. Wildl. Soc. Bull. 43, 53–61 (2019).
    1. L. Naughton-Treves,
    2. R. Grossberg,
    3. A. Treves
    , Paying for tolerance: Rural citizens’ attitudes toward wolf depredation and compensation. Conserv. Biol. 17, 1500–1511 (2003).
    1. J. F. Shogren et al
    ., Why economics matters for endangered species protection. Conserv. Biol. 13, 1257–1261 (1999).
    1. A. W. Ando
    , Waiting to be protected under the Endangered Species Act: The political economy of regulatory delay. J. Law Econ. 42, 29–60 (1999).
    1. M. P. Huijser,
    2. J. W. Duffield,
    3. A. P. Clevenger,
    4. R. J. Ament,
    5. P. T. McGowen
    , Cost–benefit analyses of mitigation measures aimed at reducing collisions with large ungulates in the United States and Canada; a decision support tool. Ecol. Soc. 14, 15–50 (2009).
    1. W. J. Hans,
    2. N. Venkateswaran,
    3. V. S. Solomi
    , On-road deer detection for advanced driver assistance using convolutional neural network. Int. J. Adv. Comput. Sci. Appl. 11, 762–773 (2020).
    1. J. Chen et al
    ., Deer crossing road detection with roadside LiDAR sensor. IEEE Access 7, 65944–65954 (2019).
    1. T. L. DeVault,
    2. T. W. Seamans,
    3. B. F. Blackwell
    , Frontal vehicle illumination via rear-facing lighting reduces potential for collisions with white-tailed deer. Ecosphere 11, e03187 (2020).
    1. A. P. Wywialowski
    , Wildlife damage to field corn in 1993. Wildl. Soc. Bull. 24, 264–271 (1996).
    1. J. S. Mao et al
    ., Habitat selection by elk before and after wolf reintroduction in Yellowstone National Park. J. Wildl. Manage. 69, 1691–1707 (2005).
    1. D. Fortin et al
    ., Wolves influence elk movements: Behavior shapes a trophic cascade in Yellowstone National Park. Ecology 86, 1320–1330 (2005).
    1. Wisconsin Department of Natural Resources
    , "Wisconsin’s deer management program: The issues involved in decision-making" (Tech. Rep. PUBL-SS-931-98, Wisconsin Department of Natural Resources, 1998).
    1. J. Yoder
    , Estimation of wildlife-inflicted property damage and abatement based on compensation program claims data. Land Econ. 78, 45 (2002).
    1. T. Levi,
    2. A. M. Kilpatrick,
    3. M. Mangel,
    4. C. C. Wilmers
    , Deer, predators, and the emergence of Lyme disease. Proc. Natl. Acad. Sci. U.S.A. 109, 10942–10947 (2012).
    1. H. J. Kilpatrick,
    2. A. M. LaBonte,
    3. K. C. Stafford
    , The relationship between deer density, tick abundance, and human cases of Lyme disease in a residential community. J. Med. Entomol. 51, 777–784 (2014).
    1. E. R. Adrion,
    2. J. Aucott,
    3. K. W. Lemke,
    4. J. P. Weiner
    , Health care costs, utilization and patterns of care following Lyme disease. PLoS One 10, e0116767 (2015).
    1. K. Berry,
    2. J. Bayham,
    3. S. R. Meyer,
    4. E. P. Fenichel
    , The allocation of time and risk of Lyme: A case of ecosystem service income and substitution effects. Environ. Resour. Econ. (Dordr) 70, 631–650 (2018).
    1. T. R. Van Deelen et al
    ., Effects of earn-a-buck and special antlerless-only seasons on Wisconsin’s deer harvests. J. Wildl. Manage. 74, 1693–1700 (2010).
    1. D. R. Diefenbach,
    2. W. L. Palmer,
    3. W. K. Shope
    , Attitudes of Pennsylvania sportsmen towards managing white-tailed deer to protect the ecological integrity of forests. Wildl. Soc. Bull. 25, 244–251 (1997).
    1. B. Blossey,
    2. P. Curtis,
    3. J. Boulanger,
    4. A. Dávalos
    , Red oak seedlings as indicators of deer browse pressure: Gauging the outcome of different white-tailed deer management approaches. Ecol. Evol. 9, 13085–13103 (2019).
    1. M. Fuller
    , "Deer hunting in the United States: Demographics and trends: Addendum to the 2011 National Survey of Fishing, Hunting, and Wildlife-Associated Recreation" (Tech. Rep. 2006-10, US Fish and Wildlife Service, 2016).
    1. US Department of the Interior
    , US Fish and Wildlife Service, and US Department of Commerce, US Census Bureau, "2016 National survey of fishing hunting, and wildlife-associated recreation" (Tech. Rep. FHW/16-NAT, US Fish and Widlife Service and US Census Bureau, 2018).
    1. S. Ciuti et al
    ., Human selection of elk behavioural traits in a landscape of fear. Proc. R. Soc. B Biol. Sci. 279, 4407–4416 (2012).
    1. J. C. Kilgo,
    2. R. F. Labisky,
    3. D. E. Fritzen
    , Influences of hunting on the behavior of white-tailed deer: Implications for conservation of the Florida panther. Conserv. Biol. 12, 1359–1364 (1998).
    1. H. L. Beyer,
    2. E. H. Merrill,
    3. N. Varley,
    4. M. S. Boyce
    , Willow on Yellowstone’s northern range: Evidence for a trophic cascade? Ecol. Appl. 17, 1563–1571 (2007).
    1. W. J. Ripple,
    2. E. J. Larsen
    , Historic aspen recruitment, elk, and wolves in northern Yellowstone National Park, USA. Biol. Conserv. 95, 361–370 (2000).
    1. W. J. Ripple,
    2. R. L. Beschta
    , Restoring Yellowstone’s aspen with wolves. Biol. Conserv. 138, 514–519 (2007).
    1. E. Marris
    , Rethinking predators: Legend of the wolf. Nature 507, 158–160 (2014).
    1. F. Messier
    , Ungulate population models with predation: A case study with the North American moose. Ecology 75, 478–488 (1994).
    1. L. L. Eberhardt,
    2. R. A. Garrott,
    3. D. W. Smith,
    4. P. J. White,
    5. R. O. Peterson
    , Assessing the impact of wolves on ungulate prey. Ecol. Appl. 13, 776–783 (2003).
    1. J. A. Vucetich,
    2. R. O. Peterson
    , The influence of top-down, bottom-up and abiotic factors on the moose (Alces alces) population of Isle Royale. Proc. Biol. Sci. 271, 183–189 (2004).
    1. J. A. Vucetich,
    2. M. Hebblewhite,
    3. D. W. Smith,
    4. R. O. Peterson
    , Predicting prey population dynamics from kill rate, predation rate and predator-prey ratios in three wolf-ungulate systems. J. Anim. Ecol. 80, 1236–1245 (2011).
    1. R. P. Thiel
    , Relationship between road densities and wolf habitat suitability in Wisconsin. Am. Midl. Nat. 113, 404–407 (1985).
    1. D. J. Mladenoff,
    2. T. A. Sickley,
    3. R. G. Haight,
    4. A. P. Wydeven
    , A regional landscape analysis and prediction of favorable gray wolf habitat in the northern Great Lakes region. Conserv. Biol. 9, 279–294 (1995).
    1. D. J. Mladenoff,
    2. T. A. Sickley,
    3. A. P. Wydeven
    , Predicting gray wolf landscape recolonization: Logistic regression models vs. new field data. Ecol. Appl. 9, 37–44 (1999).
    1. B. E. Kohn,
    2. E. M. Anderson,
    3. R. P. Thiel
    , “Wolves, roads, and highway development” in Recovery of Gray Wolves in the Great Lakes Region of the United States: An Endangered Species Success Story, A. P. Wydeven, T. R. Van Deelen, E. J. Heske, Eds. (Springer, 2009), pp. 227–242.
    1. A. P. Wydeven et al
    ., Road density as a factor in habitat selection by wolves and other carnivores in the Great Lakes region. Endanger. Species Update Ann Arbor 18, 110–114 (2001).
    1. R. Michener,
    2. C. Tighe
    , A Poisson regression model of highway fatalities. Am. Econ. Rev. 82, 452–456 (1992).
    1. S. D. Levitt,
    2. J. Porter
    , How dangerous are drinking drivers? J. Polit. Econ. 109, 1198–1237 (2001).
    1. M. R. Jacobsen
    , Fuel economy, car class mix, and safety. Am. Econ. Rev. 101, 105–109 (2011).
  1. , Traffic safety and vehicle choice: Quantifying the effects of the ‘arms race’ on American roads. J. Appl. Econ. 27, 34–62 (2012).
    1. A. C. Smith
    , Spring forward at your own risk: Daylight saving time and fatal vehicle crashes. Am. Econ. J. Appl. Econ. 8, 65–91 (2016).
    1. L. Blincoe,
    2. T. R. Miller,
    3. E. Zaloshnja,
    4. B. A. Lawrence,
    “The economic and societal impact of motor vehicle crashes, 2010 (Revised)” (Tech. Rep. DOT HS 812 013, National Highway Traffic Safety Administration, Washington, D.C., 2015).
    1. National Highway Traffic Safety Administration
    , "National motor vehicle crash causation survey" (Tech. Rep. DOT HS 811 059, US Department of Transportation, 2008).
    1. R. E. Allen,
    2. D. R. McCullough
    , Deer-car accidents in southern Michigan. J. Wildl. Manage. 40, 317–325 (1976).
    1. T. L. Bashore,
    2. W. M. Tzilkowski,
    3. E. D. Bellis
    , Analysis of deer-vehicle collision sites in Pennsylvania. J. Wildl. Manage. 49, 769–774 (1985).
    1. A. P. Clevenger,
    2. M. Barrueto,
    3. K. E. Gunson,
    4. F. M. Caryl,
    5. A. T. Ford
    , Context-dependent effects on spatial variation in deer-vehicle collisions. Ecosphere 6, 47 (2015).
    1. M. C. Farrell,
    2. P. A. Tappe
    , County-level factors contributing to deer–vehicle collisions in Arkansas. J. Wildl. Manage. 71, 2727–2731 (2007).
    1. R. A. Finder,
    2. J. L. Roseberry,
    3. A. Woolf
    , Site and landscape conditions at white-tailed deer/vehicle collision locations in Illinois. Landsc. Urban Plan. 44, 77–85 (1999).
    1. R. Found,
    2. M. S. Boyce
    , Predicting deer-vehicle collisions in an urban area. J. Environ. Manage. 92, 2486–2493 (2011).
    1. K. Gkritza,
    2. R. R. Souleyrette,
    3. M. J. Baird,
    4. B. J. Danielson
    , Empirical Bayes approach for estimating urban deer-vehicle crashes using police and maintenance records. J. Transp. Eng. 140, 04013002 (2014).
    1. K. Gkritza,
    2. M. Baird,
    3. Z. N. Hans
    , Deer-vehicle collisions, deer density, and land use in Iowa’s urban deer herd management zones. Accid. Anal. Prev. 42, 1916–1925 (2010).
    1. T. W. Grovenburg et al
    ., Factors affecting road mortality of whitetailed deer in eastern South Dakota.Hum.- Wildl. Confl. 2, 48–59 (2008).
    1. T. Hothorn,
    2. J. Müller,
    3. L. Held,
    4. L. Möst,
    5. A. Mysterud
    , Temporal patterns of deer-vehicle collisions consistent with deer activity pattern and density increase but not general accident risk. Accid. Anal. Prev. 81, 143–152 (2015).
    1. M. W. Hubbard,
    2. B. J. Danielson,
    3. R. A. Schmitz
    , Factors influencing the location of deer-vehicle accidents in Iowa. J. Wildl. Manage. 64, 707–713 (2000).
    1. Y. Lao,
    2. G. Zhang,
    3. Y.-J. Wu,
    4. Y. Wang
    , Modeling animal-vehicle collisions considering animal-vehicle interactions. Accid. Anal. Prev. 43, 1991–1998 (2011).
    1. J. J. Mckee,
    2. D. M. Cochran
    , The role of landscape in the distribution of deer-vehicle collisions in south Mississippi. Southeast. Geogr. 52, 327–340 (2012).
    1. W. J. McShea,
    2. C. M. Stewart,
    3. L. J. Kearns,
    4. S. Liccioli,
    5. D. Kocka
    , Factors affecting autumn deer-vehicle collisions in a rural Virginia county. Hum. Wildl. Interact. 2, 110–121 (2008).
    1. J. W. Ng,
    2. C. Nielson,
    3. C. C. St Clair
    , Landscape and traffic factors influencing deer-vehicle collisions in an urban enviroment. Hum.- Wildl. Confl. 2, 34–47 (2008).
    1. C. K. Nielsen,
    2. R. G. Anderson,
    3. M. D. Grund
    , Landscape influences on deer-vehicle accident areas in an urban environment. J. Wildl. Manage. 67, 46–51 (2003).
    1. K. Sudharsan,
    2. S. J. Riley,
    3. H. Campa III
    , Relative risks of deer–vehicle collisions along road types in southeast Michigan. Hum. Dimens. Wildl. 14, 341–352 (2009).
    1. J. Aguero-Valverde,
    2. P. P. Jovanis
    , Spatial analysis of fatal and injury crashes in Pennsylvania. Accid. Anal. Prev. 38, 618–625 (2006).
    1. M.-P. Andreescu,
    2. D. B. Frost
    , Weather and traffic accidents in Montreal, Canada. Clim. Res. 9, 225–230 (1998).
    1. J. Andrey,
    2. S. Yagar
    , A temporal analysis of rain-related crash risk. Accid. Anal. Prev. 25, 465–472 (1993).
    1. J. Bertness
    , Rain-related impacts on selected transportation activities and utility services in the Chicago area. J. Appl. Meteorol. 19, 545–556 (1980).
    1. D. Eisenberg
    , The mixed effects of precipitation on traffic crashes. Accid. Anal. Prev. 36, 637–647 (2004).
    1. L. Fridstrøm,
    2. J. Ifver,
    3. S. Ingebrigtsen,
    4. R. Kulmala,
    5. L. K. Thomsen
    , Measuring the contribution of randomness, exposure, weather, and daylight to the variation in road accident counts. Accid. Anal. Prev. 27, 1–20 (1995).
    1. B. Leard,
    2. K. Roth
    , "Weather, traffic accidents, and climate change" (Tech. Rep. RFF DP 15-19, Resources for the Future, 2015).
    1. N. Levine,
    2. K. E. Kim,
    3. L. H. Nitz
    , Daily fluctuations in Honolulu motor vehicle accidents. Accid. Anal. Prev. 27, 785–796 (1995).
    1. N. V. Malyshkina,
    2. F. L. Mannering
    , Markov switching multinomial logit model: An application to accident-injury severities. Accid. Anal. Prev. 41, 829–838 (2009).
    1. V. Shankar,
    2. F. Mannering,
    3. W. Barfield
    , Effect of roadway geometrics and environmental factors on rural freeway accident frequencies. Accid. Anal. Prev. 27, 371–389 (1995).
    1. L. A. Sherretz,
    2. B. C. Farhar
    , An analysis of the relationship between rainfall and the occurrence of traffic accidents. J. Appl. Meteorol. 17, 711–715 (1978).
    1. J. Biggs,
    2. S. Sherwood,
    3. S. Michalak,
    4. L. Hansen,
    5. C. Bare
    , Animal-related vehicle accidents at the Los Alamos National Laboratory, New Mexico. Southwest. Nat. 49, 384–394 (2004).
    1. C. M. Rolandsen,
    2. E. J. Solberg,
    3. I. Herfindal,
    4. B. Van Moorter,
    5. B.-E. Sæther
    , Large-scale spatiotemporal variation in road mortality of moose: Is it all about population density? Ecosphere 2, 113 (2011).
    1. A. Mysterud
    , Temporal variation in the number of car-killed red deer Cervus elaphus in Norway. Wildl. Biol. 10, 203–211 (2004).
    1. K. L. Parker,
    2. C. T. Robbins
    , Thermoregulation in mule deer and elk. Can. J. Zool. 62, 1409–1422 (1984).
    1. K. E. Gunson,
    2. G. Mountrakis,
    3. L. J. Quackenbush
    , Spatial wildlife-vehicle collision models: A review of current work and its application to transportation mitigation projects. J. Environ. Manage. 92, 1074–1082 (2011).
    1. A. Treves,
    2. K. A. Martin,
    3. A. P. Wydeven,
    4. J. E. Wiedenhoeft
    , Forecasting environmental hazards and the application of risk maps to predator attacks on livestock. Bioscience 61, 451–458 (2011).
    1. A. Treves,
    2. M. F. Rabenhorst
    , Risk map for wolf threats to livestock still predictive 5 years after construction. PLoS One 12, e0180043 (2017).
    1. A. L. Iverson,
    2. L. R. Iverson
    , Spatial and temporal trends of deer harvest and deer-vehicle accidents in Ohio. Ohio J. Sci. 99, 84–94 (1999).
    1. J. Raynor
    , Measuring the Economic Impacts of Keystone Species (University of Wisconsin-Madison, Madison, WI, 2017).
    1. K. A. Schwabe,
    2. P. W. Schuhmann,
    3. M. J. Tonkovich,
    , “An analysis of deer-vehicle collisions: the case of Ohio in Human Conflicts with Wildlife: Economic Considerations” Proceedings of the Third NWRC Special Symposium, L. Clark, et al., Eds.. (National Wildlife Research Center, Fort Collins, CO, 2002), pp. 91–103.
    1. A. Seiler
    , Trends and spatial patterns in ungulate-vehicle collisions in Sweden. Wildl. Biol. 10, 301–313 (2004).
    1. Wisconsin Department of Natural Resources
    , Management Workbook for White-Tailed Deer (Wisconsin Department of Natural Resources, 2001).
  2. 2011 Wisconsin Act 69 (October 7, 2020).
    1. A. P. Wydeven,
    2. J. E. Wiedenhoeft,
    3. R. N. Schultz,
    4. J. Bruner,
    5. S. Boles
    , "Status of the timber wolf in Wisconsin: Performance report 1 July 2011 through 30 June 2012" (Tech. Rep. 143, Wisconsin Endangered Resources, Wisconsin Department of Natural Resources, Madison, WI, 2012).
    1. Wisconsin Department of Natural Resources
    , “Wolves and deer in Wisconsin (2009).” http://dnr.wi.gov/topic/wildlifehabitat/wolf/documents/wolvesdeer2009.pdf. Accessed 29 April 2021.
    1. B. Dennis,
    2. M. R. Otten
    , Joint effects of density dependence and rainfall on abundance of San Joaquin kit fox. J. Wildl. Manage. 64, 388–400 (2000).
    1. T. M. Hegel et al
    ., Seasonal effects of Pacific-based climate on recruitment in a predator-limited large herbivore. J. Anim. Ecol. 79, 471–482 (2010).
    1. US Department of Transportation
    , Technical advisory T 7570.2. Motor vehicle accident costs (US Department of Transportation, Federal Highway Administration, Washington, D.C., 1994).

View Full Text

Log in using your username and password

Password *
Forgot your user name or password?

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.
If your organization uses OpenAthens, you can log in using your OpenAthens username and password. To check if your institution is supported, please see this list. Contact your library for more details.

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.

Subscribers, for more details, please visit our Subscriptions FAQ.

Please click here to log into the PNAS submission website.

Article Classifications

You May Also be Interested in

Lead from historical gasoline use continues to affect air quality in urban London almost 20 years after its phase-out.
Image credit: Eléonore Resongles and Volker Dietze.
Winter rainfall in sub-Saharan Africa limits the size of painted lady butterfly migrations to Europe in the spring.
Image credit: Oriol Massana Valeriano (photographer).
Many languages in which unique medicinal knowledge exists are at risk of extinction, and indigenous language loss may result in lost medicinal knowledge.
Image credit: Pixabay.
The approach can enable faster, more diverse study enrollments. But uncontrolled environments could also potentially lead to faulty data and flawed conclusions.
Image credit: Shutterstock/Andrey_Popov.
Genome editing technology has grown too quickly, and stakeholders in the debate are too diverse, for current approaches to establish a robust regulatory regime.
Image credit: Shutterstock/vchal.

About Joyk


Aggregate valuable and interesting links.
Joyk means Joy of geeK