12

单调队列结构解决滑动窗口问题

 3 years ago
source link: https://labuladong.github.io/algo/%E6%95%B0%E6%8D%AE%E7%BB%93%E6%9E%84%E7%B3%BB%E5%88%97/%E5%8D%95%E8%B0%83%E9%98%9F%E5%88%97.html
Go to the source link to view the article. You can view the picture content, updated content and better typesetting reading experience. If the link is broken, please click the button below to view the snapshot at that time.
neoserver,ios ssh client

特殊数据结构:单调队列

souyisou.png

👆让天下没有难刷的算法!若 GitBook 访问太慢,可尝试 GiteePagesGitHubPages

相关推荐:

读完本文,你不仅学会了算法套路,还可以顺便去 LeetCode 上拿下如下题目:

239.滑动窗口最大值(困难)


前文用 单调栈解决三道算法问题 介绍了单调栈这种特殊数据结构,本文写一个类似的数据结构「单调队列」。

也许这种数据结构的名字你没听过,其实没啥难的,就是一个「队列」,只是使用了一点巧妙的方法,使得队列中的元素全都是单调递增(或递减)的

「单调栈」主要解决 Next Great Number 一类算法问题,而「单调队列」这个数据结构可以解决滑动窗口相关的问题,比如说力扣第 239 题「滑动窗口最大值」,难度 Hard:

给你输入一个数组 nums 和一个正整数 k,有一个大小为 k 的窗口在 nums 上从左至右滑动,请你输出每次窗口中 k 个元素的最大值。

函数签名如下:

int[] maxSlidingWindow(int[] nums, int k);

比如说力扣给出的一个示例:

window.png

一、搭建解题框架

这道题不复杂,难点在于如何在 O(1) 时间算出每个「窗口」中的最大值,使得整个算法在线性时间完成。这种问题的一个特殊点在于,「窗口」是不断滑动的,也就是你得动态地计算窗口中的最大值。

对于这种动态的场景,很容易得到一个结论:

在一堆数字中,已知最值为 A,如果给这堆数添加一个数 B,那么比较一下 AB 就可以立即算出新的最值;但如果减少一个数,就不能直接得到最值了,因为如果减少的这个数恰好是 A,就需要遍历所有数重新找新的最值

回到这道题的场景,每个窗口前进的时候,要添加一个数同时减少一个数,所以想在 O(1) 的时间得出新的最值,不是那么容易的,需要「单调队列」这种特殊的数据结构来辅助。

一个普通的队列一定有这两个操作:

class Queue {
    // enqueue 操作,在队尾加入元素 n
    void push(int n);
    // dequeue 操作,删除队头元素
    void pop();
}

一个「单调队列」的操作也差不多:

class MonotonicQueue {
    // 在队尾添加元素 n
    void push(int n);
    // 返回当前队列中的最大值
    int max();
    // 队头元素如果是 n,删除它
    void pop(int n);
}

当然,这几个 API 的实现方法肯定跟一般的 Queue 不一样,不过我们暂且不管,而且认为这几个操作的时间复杂度都是 O(1),先把这道「滑动窗口」问题的解答框架搭出来:

int[] maxSlidingWindow(int[] nums, int k) {
    MonotonicQueue window = new MonotonicQueue();
    List<Integer> res = new ArrayList<>();

    for (int i = 0; i < nums.length; i++) {
        if (i < k - 1) {
            //先把窗口的前 k - 1 填满
            window.push(nums[i]);
        } else {
            // 窗口开始向前滑动
            // 移入新元素
            window.push(nums[i]);
            // 将当前窗口中的最大元素记入结果
            res.add(window.max());
            // 移出最后的元素
            window.pop(nums[i - k + 1]);
        }
    }
    // 将 List 类型转化成 int[] 数组作为返回值
    int[] arr = new int[res.size()];
    for (int i = 0; i < res.size(); i++) {
        arr[i] = res.get(i);
    }
    return arr;
}
1.png

这个思路很简单,能理解吧?下面我们开始重头戏,单调队列的实现。

二、实现单调队列数据结构

观察滑动窗口的过程就能发现,实现「单调队列」必须使用一种数据结构支持在头部和尾部进行插入和删除,很明显双链表是满足这个条件的。

「单调队列」的核心思路和「单调栈」类似,push 方法依然在队尾添加元素,但是要把前面比自己小的元素都删掉:

class MonotonicQueue {
// 双链表,支持头部和尾部增删元素
private LinkedList<Integer> q = new LinkedList<>();

public void push(int n) {
    // 将前面小于自己的元素都删除
    while (!q.isEmpty() && q.getLast() < n) {
        q.pollLast();
    }
    q.addLast(n);
}

你可以想象,加入数字的大小代表人的体重,把前面体重不足的都压扁了,直到遇到更大的量级才停住。

3.png

如果每个元素被加入时都这样操作,最终单调队列中的元素大小就会保持一个单调递减的顺序,因此我们的 max 方法可以可以这样写:

public int max() {
    // 队头的元素肯定是最大的
    return q.getFirst();
}

pop 方法在队头删除元素 n,也很好写:

public void pop(int n) {
    if (n == q.getFirst()) {
        q.pollFirst();
    }
}

之所以要判断 data.front() == n,是因为我们想删除的队头元素 n 可能已经被「压扁」了,可能已经不存在了,所以这时候就不用删除了:

2.png

至此,单调队列设计完毕,看下完整的解题代码:

/* 单调队列的实现 */
class MonotonicQueue {
    LinkedList<Integer> q = new LinkedList<>();
    public void push(int n) {
        // 将小于 n 的元素全部删除
        while (!q.isEmpty() && q.getLast() < n) {
            q.pollLast();
        }
        // 然后将 n 加入尾部
        q.addLast(n);
    }

    public int max() {
        return q.getFirst();
    }

    public void pop(int n) {
        if (n == q.getFirst()) {
            q.pollFirst();
        }
    }
}

/* 解题函数的实现 */
int[] maxSlidingWindow(int[] nums, int k) {
    MonotonicQueue window = new MonotonicQueue();
    List<Integer> res = new ArrayList<>();

    for (int i = 0; i < nums.length; i++) {
        if (i < k - 1) {
            //先填满窗口的前 k - 1
            window.push(nums[i]);
        } else {
            // 窗口向前滑动,加入新数字
            window.push(nums[i]);
            // 记录当前窗口的最大值
            res.add(window.max());
            // 移出旧数字
            window.pop(nums[i - k + 1]);
        }
    }
    // 需要转成 int[] 数组再返回
    int[] arr = new int[res.size()];
    for (int i = 0; i < res.size(); i++) {
        arr[i] = res.get(i);
    }
    return arr;
}

有一点细节问题不要忽略,在实现 MonotonicQueue 时,我们使用了 Java 的 LinkedList,因为链表结构支持在头部和尾部快速增删元素;而在解法代码中的 res 则使用的 ArrayList 结构,因为后续会按照索引取元素,所以数组结构更合适。

三、算法复杂度分析

读者可能疑惑,push 操作中含有 while 循环,时间复杂度应该不是 O(1) 呀,那么本算法的时间复杂度应该不是线性时间吧?

单独看 push 操作的复杂度确实不是 O(1),但是算法整体的复杂度依然是 O(N) 线性时间。要这样想,nums 中的每个元素最多被 push_backpop_back 一次,没有任何多余操作,所以整体的复杂度还是 O(N)

空间复杂度就很简单了,就是窗口的大小 O(k)

其实我觉得,这种特殊数据结构的设计还是蛮有意思的,你学会单调队列的使用了吗?学会了给个三连?

_____________

《labuladong 的算法小抄》已经出版,关注公众号「labuladong」查看详情;后台回复关键词「进群」可加入算法群,大家一起刷题/内推

%E6%B3%A5%E7%9F%B3%E6%B5%81.PNG
Copyright © labuladong 2020 all right reserved,powered by Gitbook该文件修订时间: 2020-12-21 21:35:18

About Joyk


Aggregate valuable and interesting links.
Joyk means Joy of geeK