11

经典动态规划:完全背包问题

 3 years ago
source link: https://labuladong.github.io/algo/%E5%8A%A8%E6%80%81%E8%A7%84%E5%88%92%E7%B3%BB%E5%88%97/%E8%83%8C%E5%8C%85%E9%9B%B6%E9%92%B1.html
Go to the source link to view the article. You can view the picture content, updated content and better typesetting reading experience. If the link is broken, please click the button below to view the snapshot at that time.
neoserver,ios ssh client

背包问题之零钱兑换

souyisou.png

👆让天下没有难刷的算法!若 GitBook 访问太慢,可尝试 GiteePagesGitHubPages

相关推荐:

读完本文,你不仅学会了算法套路,还可以顺便去 LeetCode 上拿下如下题目:

518.零钱兑换II(中等)


零钱兑换 2 是另一种典型背包问题的变体,我们前文已经讲了 经典动态规划:0-1 背包问题背包问题变体:相等子集分割

读本文之前,希望你已经看过前两篇文章,看过了动态规划和背包问题的套路,这篇继续按照背包问题的套路,列举一个背包问题的变形。

本文聊的是 LeetCode 第 518 题 Coin Change 2,题目如下:

title
int change(int amount, int[] coins);

PS:至于 Coin Change 1,在我们前文 动态规划套路详解 写过。

我们可以把这个问题转化为背包问题的描述形式

有一个背包,最大容量为 amount,有一系列物品 coins,每个物品的重量为 coins[i]每个物品的数量无限。请问有多少种方法,能够把背包恰好装满?

这个问题和我们前面讲过的两个背包问题,有一个最大的区别就是,每个物品的数量是无限的,这也就是传说中的「完全背包问题」,没啥高大上的,无非就是状态转移方程有一点变化而已。

下面就以背包问题的描述形式,继续按照流程来分析。

第一步要明确两点,「状态」和「选择」

状态有两个,就是「背包的容量」和「可选择的物品」,选择就是「装进背包」或者「不装进背包」嘛,背包问题的套路都是这样。

明白了状态和选择,动态规划问题基本上就解决了,只要往这个框架套就完事儿了:

for 状态1 in 状态1的所有取值:
    for 状态2 in 状态2的所有取值:
        for ...
            dp[状态1][状态2][...] = 计算(选择1,选择2...)

第二步要明确 dp 数组的定义

首先看看刚才找到的「状态」,有两个,也就是说我们需要一个二维 dp 数组。

dp[i][j] 的定义如下:

若只使用前 i 个物品,当背包容量为 j 时,有 dp[i][j] 种方法可以装满背包。

换句话说,翻译回我们题目的意思就是:

若只使用 coins 中的前 i 个硬币的面值,若想凑出金额 j,有 dp[i][j] 种凑法

经过以上的定义,可以得到:

base case 为 dp[0][..] = 0, dp[..][0] = 1。因为如果不使用任何硬币面值,就无法凑出任何金额;如果凑出的目标金额为 0,那么“无为而治”就是唯一的一种凑法。

我们最终想得到的答案就是 dp[N][amount],其中 Ncoins 数组的大小。

大致的伪码思路如下:

int dp[N+1][amount+1]
dp[0][..] = 0
dp[..][0] = 1

for i in [1..N]:
    for j in [1..amount]:
        把物品 i 装进背包,
        不把物品 i 装进背包
return dp[N][amount]

第三步,根据「选择」,思考状态转移的逻辑

注意,我们这个问题的特殊点在于物品的数量是无限的,所以这里和之前写的背包问题文章有所不同。

如果你不把这第 i 个物品装入背包,也就是说你不使用 coins[i] 这个面值的硬币,那么凑出面额 j 的方法数 dp[i][j] 应该等于 dp[i-1][j],继承之前的结果。

如果你把这第 i 个物品装入了背包,也就是说你使用 coins[i] 这个面值的硬币,那么 dp[i][j] 应该等于 dp[i][j-coins[i-1]]

首先由于 i 是从 1 开始的,所以 coins 的索引是 i-1 时表示第 i 个硬币的面值。

dp[i][j-coins[i-1]] 也不难理解,如果你决定使用这个面值的硬币,那么就应该关注如何凑出金额 j - coins[i-1]

比如说,你想用面值为 2 的硬币凑出金额 5,那么如果你知道了凑出金额 3 的方法,再加上一枚面额为 2 的硬币,不就可以凑出 5 了嘛。

综上就是两种选择,而我们想求的 dp[i][j] 是「共有多少种凑法」,所以 dp[i][j] 的值应该是以上两种选择的结果之和

for (int i = 1; i <= n; i++) {
    for (int j = 1; j <= amount; j++) {
        if (j - coins[i-1] >= 0)
            dp[i][j] = dp[i - 1][j] 
                     + dp[i][j-coins[i-1]];
return dp[N][W]

最后一步,把伪码翻译成代码,处理一些边界情况

我用 Java 写的代码,把上面的思路完全翻译了一遍,并且处理了一些边界问题:

int change(int amount, int[] coins) {
    int n = coins.length;
    int[][] dp = amount int[n + 1][amount + 1];
    // base case
    for (int i = 0; i <= n; i++) 
        dp[i][0] = 1;

    for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= amount; j++)
            if (j - coins[i-1] >= 0)
                dp[i][j] = dp[i - 1][j] 
                         + dp[i][j - coins[i-1]];
            else 
                dp[i][j] = dp[i - 1][j];
    }
    return dp[n][amount];
}

而且,我们通过观察可以发现,dp 数组的转移只和 dp[i][..]dp[i-1][..] 有关,所以可以压缩状态,进一步降低算法的空间复杂度:

int change(int amount, int[] coins) {
    int n = coins.length;
    int[] dp = new int[amount + 1];
    dp[0] = 1; // base case
    for (int i = 0; i < n; i++)
        for (int j = 1; j <= amount; j++)
            if (j - coins[i] >= 0)
                dp[j] = dp[j] + dp[j-coins[i]];

    return dp[amount];
}

这个解法和之前的思路完全相同,将二维 dp 数组压缩为一维,时间复杂度 O(N*amount),空间复杂度 O(amount)。

至此,这道零钱兑换问题也通过背包问题的框架解决了。

_____________

《labuladong 的算法小抄》已经出版,关注公众号「labuladong」查看详情;后台回复关键词「进群」可加入算法群,大家一起刷题/内推

%E6%B3%A5%E7%9F%B3%E6%B5%81.PNG
Copyright © labuladong 2020 all right reserved,powered by Gitbook该文件修订时间: 2020-12-21 21:35:18

About Joyk


Aggregate valuable and interesting links.
Joyk means Joy of geeK