25

GitHub - yassouali/ML_paper_notes: Notes and summaries of some Machine Learning...

 4 years ago
source link: https://github.com/yassouali/ML_paper_notes
Go to the source link to view the article. You can view the picture content, updated content and better typesetting reading experience. If the link is broken, please click the button below to view the snapshot at that time.
neoserver,ios ssh client

README.md

ML Papers

This repo contains notes and short summaries of some ML related papers I come across, organized by subjects and the summaries are in the form of PDFs.

Self-Supervised Learning

  • Selfie: Self-supervised Pretraining for Image Embedding (2019): [Paper] [Notes]
  • Self-Supervised Representation Learning by Rotation Feature Decoupling (2019): [Paper] [Notes]
  • Revisiting Self-Supervised Visual Representation Learning (2019): [Paper] [Notes]
  • AET vs. AED: Unsupervised Representation Learning by Auto-Encoding Transformations rather than Data (2019): [Paper] [Notes]
  • Boosting Self-Supervised Learning via Knowledge Transfer (2018): [Paper] [Notes]
  • Self-Supervised Feature Learning by Learning to Spot Artifacts (2018): [Paper] [Notes]
  • Unsupervised Representation Learning by Predicting Image Rotations (2018): [Paper] [Notes]
  • Cross Pixel Optical-Flow Similarity for Self-Supervised Learning (2018): [Paper] [Notes]
  • Multi-task Self-Supervised Visual Learning (2017): [Paper] [Notes]
  • Split-Brain Autoencoders: Unsupervised Learning by Cross-Channel Prediction (2017): [Paper] [Notes]
  • Colorization as a Proxy Task for Visual Understanding (2017): [Paper] [Notes]
  • Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles (2017): [Paper] [Notes]
  • Unsupervised Visual Representation Learning by Context Prediction (2016): [Paper] [Notes]
  • Colorful image colorization (2016): [Paper] [Notes]
  • Learning visual groups from co-occurrences in space and time (2015): [Paper] [Notes]
  • Discriminative unsupervised feature learning with exemplar convolutional neural networks (2015): [Paper] [Notes]

Semi-Supervised Learning

  • Dual Student: Breaking the Limits of the Teacher in Semi-supervised Learning (2019): [Paper] [Notes]
  • S4L: Self-Supervised Semi-Supervised Learning (2019): [Paper] [Notes]
  • Semi-Supervised Learning by Augmented Distribution Alignment (2019): [Paper] [Notes]
  • MixMatch: A Holistic Approach toSemi-Supervised Learning (2019): [Paper] [Notes]
  • Unsupervised Data Augmentation (2019): [Paper] [Notes]
  • Interpolation Consistency Training forSemi-Supervised Learning (2019): [Paper] [Notes]
  • Deep Co-Training for Semi-Supervised Image Recognition (2018): [Paper] [Notes]
  • Unifying semi-supervised and robust learning by mixup (2019): [Paper] [Notes]
  • Realistic Evaluation of Deep Semi-Supervised Learning Algorithms (2018): [Paper] [Notes]
  • Semi-Supervised Sequence Modeling with Cross-View Training (2018): [Paper] [Notes]
  • Virtual Adversarial Training:A Regularization Method for Supervised andSemi-Supervised Learning (2017): [Paper] [Notes]
  • Mean teachers are better role models (2017): [Paper] [Notes]
  • Temporal Ensembling for Semi-Supervised Learning (2017): [Paper] [Notes]
  • Semi-Supervised Learning with Ladder Networks (2015): [Paper] [Notes]

Unsupervised Learning

  • Invariant Information Clustering for Unsupervised Image Classification and Segmentation (2019): [Paper] [Notes]
  • Deep Clustering for Unsupervised Learning of Visual Feature (2018): [Paper] [Notes]

Semantic Segmentation

  • DeepLabv3+: Encoder-Decoder with Atrous Separable Convolution (2018): [Paper] [Notes]
  • Large Kernel Matter, Improve Semantic Segmentation by Global Convolutional Network (2017): [Paper] [Notes]
  • Understanding Convolution for Semantic Segmentation (2018): [Paper] [Notes]
  • Rethinking Atrous Convolution for Semantic Image Segmentation (2017): [Paper] [Notes]
  • RefineNet: Multi-path refinement networks for high-resolution semantic segmentation (2017): [Paper] [Notes]
  • Pyramid Scene Parsing Network (2017): [Paper] [Notes]
  • SegNet: A Deep ConvolutionalEncoder-Decoder Architecture for ImageSegmentation (2016): [Paper] [Notes]
  • ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation (2016): [Paper] [Notes]
  • Attention to Scale: Scale-aware Semantic Image Segmentation (2016): [Paper] [Notes]
  • Deeplab: semantic image segmentation with DCNN, atrous convs and CRFs (2016): [Paper] [Notes]
  • U-Net: Convolutional Networks for Biomedical Image Segmentation (2015): [Paper] [Notes]
  • Fully Convolutional Networks for Semantic Segmentation (2015): [Paper] [Notes]
  • Hypercolumns for object segmentation and fine-grained localization (2015): [Paper] [Notes]

Weakly- and Semi-supervised Semantic segmentation

  • Box-driven Class-wise Region Masking and Filling Rate Guided Loss for Weakly Supervised Semantic Segmentation (2019): [Paper] [Notes]
  • FickleNet: Weakly and Semi-supervised Semantic Image Segmentation using Stochastic Inference (2019): [Paper] [Notes]
  • Weakly-Supervised Semantic Segmentation Network with Deep Seeded Region Growing (2018): [Paper] [Notes]
  • Learning Pixel-level Semantic Affinity with Image-level Supervision for Weakly Supervised Semantic Segmentation (2018): [Paper] [Notes]
  • Object Region Mining with Adversarial Erasing: A Simple Classification to Semantic Segmentation Approach (2018): [Paper] [Notes]
  • Revisiting Dilated Convolution: A Simple Approach for Weakly- and Semi- Supervised Semantic Segmentation (2018): [Paper] [Notes]
  • Tell Me Where to Look: Guided Attention Inference Network (2018): [Paper] [Notes]
  • Semi Supervised Semantic Segmentation Using Generative Adversarial Network (2017): [Paper] [Notes]
  • Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation (2015): [Paper] [Notes]
  • Weakly- and Semi-Supervised Learning of a DCNN for Semantic Image Segmentation (2015): [Paper] [Notes]

Information Retrieval

  • VSE++: Improving Visual-Semantic Embeddings with Hard Negatives (2018): [Paper] [Notes]

Visual Explanation & Attention

  • Attention Branch Network: Learning of Attention Mechanism for Visual Explanation (2019): [Paper] [Notes]
  • Attention-based Dropout Layer for Weakly Supervised Object Localization (2019): [Paper] [Notes]
  • Paying More Attention to Attention: Improving the Performance of Convolutional Neural Networks via Attention Transfer (2016): [Paper] [Notes]

Graph neural network & Graph embeddings

  • Pixels to Graphs by Associative Embedding (2017): [Paper] [Notes]
  • Associative Embedding: End-to-End Learning forJoint Detection and Grouping (2017): [Paper] [Notes]
  • Interaction Networks for Learning about Objects , Relations and Physics (2016): [Paper] [Notes]
  • DeepWalk: Online Learning of Social Representation (2014): [Paper] [Notes]
  • The graph neural network model (2009): [Paper] [Notes]

Regularization

  • Manifold Mixup: Better Representations by Interpolating Hidden States (2018): [Paper] [Notes]

Deep learning Methods & Models

Document analysis and segmentation

  • dhSegment: A generic deep-learning approach for document segmentation (2018): [Paper] [Notes]
  • Learning to extract semantic structure from documents using multimodal fully convolutional neural networks (2017): [Paper] [Notes]
  • Page Segmentation for Historical Handwritten Document Images Using Conditional Random Fields (2016): [Paper] [Notes]
  • ICDAR 2015 competition on text line detection in historical documents (2015): [Paper] [Notes]
  • Handwritten text line segmentation using Fully Convolutional Network (2017): [Paper] [Notes]
  • Deep Neural Networks for Large Vocabulary Handwritten Text Recognition (2015): [Paper] [Notes]
  • Page Segmentation of Historical Document Images with Convolutional Autoencoders (2015): [Paper] [Notes]
  • A typed and handwritten text block segmentation system for heterogeneous and complex documents (2012): [Paper] [Notes]
  • Document layout analysis, Classical approaches (1992:2001): [Paper] [Notes]
  • Page Segmentation for Historical Document Images Based on Superpixel Classification with Unsupervised Feature Learning (2016): [Paper] [Notes]
  • Paragraph text segmentation into lines with Recurrent Neural Networks (2015): [Paper] [Notes]
  • A comprehensive survey of mostly textual document segmentation algorithms since 2008 (2017 ): [Paper] [Notes]
  • Convolutional Neural Networks for Page Segmentation of Historical Document Images (2017): [Paper] [Notes]
  • ICDAR2009 Page Segmentation Competition (2009): [Paper] [Notes]
  • Amethod for combining complementary techniques for document image segmentation (2009): [Paper] [Notes]

About Joyk


Aggregate valuable and interesting links.
Joyk means Joy of geeK